论文标题
纠缠辅助沟通的强逆向指数
Strong Converse Exponent for Entanglement-Assisted Communication
论文作者
论文摘要
我们确定量子通道的纠缠辅助经典通信的确切强逆向指数。我们的主要贡献是派生的强度匡威指数的上限,其特征是夹层rényi差异。事实证明,这种上限与古普塔(Gupta)和王尔德(Wilde)的下限(Commun。Math。Phys。334:867-887,2015)一致。因此,强烈的匡威指数源于这两个边界的组合。我们的结果有两个含义。首先,这意味着,指数键构成了由Cooney,Mosonyi和Wilde衍生而来的量子反馈辅助经典交流的强大相反特性(Commun。Math。344:797-829,2016)是最佳的。这回答了他们的肯定问题。因此,我们也确定了此问题的确切强逆向指数。其次,由于对梁和马修斯的观察,很容易扩展以处理纠缠或量子反馈的帮助下量子信息的传输,从而产生相似的结果。上面的发现首次提供了对频道的夹心rényi信息$α> 1 $的完整操作解释。
We determine the exact strong converse exponent for entanglement-assisted classical communication of a quantum channel. Our main contribution is the derivation of an upper bound for the strong converse exponent which is characterized by the sandwiched Rényi divergence. It turns out that this upper bound coincides with the lower bound of Gupta and Wilde (Commun. Math. Phys. 334:867-887, 2015). Thus, the strong converse exponent follows from the combination of these two bounds. Our result has two implications. Firstly, it implies that the exponential bound for the strong converse property of quantum-feedback-assisted classical communication, derived by Cooney, Mosonyi and Wilde (Commun. Math. Phys. 344:797-829, 2016), is optimal. This answers their open question in the affirmative. Hence, we have determined the exact strong converse exponent for this problem as well. Secondly, due to an observation of Leung and Matthews, it can be easily extended to deal with the transmission of quantum information under the assistance of entanglement or quantum feedback, yielding similar results. The above findings provide, for the first time, a complete operational interpretation to the channel's sandwiched Rényi information of order $α> 1$.