论文标题
演员优先经验重播
Actor Prioritized Experience Replay
论文作者
论文摘要
一种被称为优先体验重播(PER)的广泛研究的深钢筋学习(RL)技术使代理可以从与其时间差异(TD)误差成正比的过渡中学习。尽管已经表明,PER是离散作用域中深度RL方法总体性能的最关键组成部分之一,但许多经验研究表明,在连续控制中,它表现出色的参与者 - 批评算法。从理论上讲,我们表明,无法有效地通过具有较大TD错误的过渡对演员网络进行训练。结果,在Q网络下计算的近似策略梯度与在最佳Q功能下计算的实际梯度不同。在此激励的基础上,我们引入了一种新颖的经验重播抽样框架,用于演员批评方法,该框架还可以应对稳定性和最新发现的问题的经验表现不佳。引入的算法提出了一个新的改进的分支,包括对演员和评论家网络的有效且有效的培训。一系列广泛的实验验证了我们的理论主张,并证明了引入的方法显着超过了竞争方法,并且比标准的非政府参与者 - 批评算法获得了最先进的结果。
A widely-studied deep reinforcement learning (RL) technique known as Prioritized Experience Replay (PER) allows agents to learn from transitions sampled with non-uniform probability proportional to their temporal-difference (TD) error. Although it has been shown that PER is one of the most crucial components for the overall performance of deep RL methods in discrete action domains, many empirical studies indicate that it considerably underperforms actor-critic algorithms in continuous control. We theoretically show that actor networks cannot be effectively trained with transitions that have large TD errors. As a result, the approximate policy gradient computed under the Q-network diverges from the actual gradient computed under the optimal Q-function. Motivated by this, we introduce a novel experience replay sampling framework for actor-critic methods, which also regards issues with stability and recent findings behind the poor empirical performance of PER. The introduced algorithm suggests a new branch of improvements to PER and schedules effective and efficient training for both actor and critic networks. An extensive set of experiments verifies our theoretical claims and demonstrates that the introduced method significantly outperforms the competing approaches and obtains state-of-the-art results over the standard off-policy actor-critic algorithms.