论文标题
实验Nbox神经元中尖峰和爆发的表征和建模
Characterization and modeling of spiking and bursting in experimental NbOx neuron
论文作者
论文摘要
硬件尖峰神经网络具有高能效率实现人工智能的希望。在这种情况下,固态和可扩展的备再次记录可用于模仿生物神经元的特征。但是,这些设备显示出有限的神经元行为,必须集成在更复杂的电路中,以实现生物神经元的丰富动力学。在这里,我们研究了一个Nbox Memristor神经元,该神经元能够模拟许多神经元动力学,包括滋补尖峰,随机尖峰,漏水综合和传火特征,峰值延迟,时间整合。该设备还表现出阶段爆发,这是在固态纳米神经元中几乎没有观察到和研究的特性。我们表明,我们可以通过使用非线性动力学来复制并理解这种特殊的响应。这些结果表明,单个Nbox设备足以模仿丰富的神经元动力学集合,该动力学铺平了前进的路径,以实现可扩展和节能的神经形态计算范式。
Hardware spiking neural networks hold the promise of realizing artificial intelligence with high energy efficiency. In this context, solid-state and scalable memristors can be used to mimic biological neuron characteristics. However, these devices show limited neuronal behaviors and have to be integrated in more complex circuits to implement the rich dynamics of biological neurons. Here we studied a NbOx memristor neuron that is capable of emulating numerous neuronal dynamics, including tonic spiking, stochastic spiking, leaky-integrate-and-fire features, spike latency, temporal integration. The device also exhibits phasic bursting, a property that has scarcely been observed and studied in solid-state nano-neurons. We show that we can reproduce and understand this particular response through simulations using non-linear dynamics. These results show that a single NbOx device is sufficient to emulate a collection of rich neuronal dynamics that paves a path forward for realizing scalable and energy-efficient neuromorphic computing paradigms.