论文标题

在雷诺解决大陆规模的库存路由问题

Solving a Continent-Scale Inventory Routing Problem at Renault

论文作者

Bouvier, Louis, Dalle, Guillaume, Parmentier, Axel, Vidal, Thibaut

论文摘要

本文是与雷诺合作的果实。他们的后勤需要解决大陆规模的多属性库存路由问题(IRP)。我们的实例平均有30个商品,16个仓库和600个客户分布在整个大陆上,比文献中的数量级大。现有算法不会扩展。我们提出了一个大型邻里搜索(LNS)。为了使它起作用,(1)我们将现有的分流式车辆路线问题和IRP社区推广到这种情况下,(2)我们将中等规模IRP的最先进的数学家变成了一个大社区,(3)我们介绍了两个新颖的扰动:客户的重新插入,而商品的重新插入为IRP解决方案。我们还根据流量松弛得出了新的下限。为了刺激大型IRP的研究,我们介绍了工业实例库。我们在这些实例上基准了我们的算法,并将代码开源。广泛的数值实验突出了我们LN的每个组件的相关性。

This paper is the fruit of a partnership with Renault. Their backward logistic requires solving a continent-scale multi-attribute inventory routing problem (IRP). With an average of 30 commodities, 16 depots, and 600 customers spread across a continent, our instances are orders of magnitude larger than those in the literature. Existing algorithms do not scale. We propose a large neighborhood search (LNS). To make it work, (1) we generalize existing split delivery vehicle routing problem and IRP neighborhoods to this context, (2) we turn a state-of-the art matheuristic for medium-scale IRP into a large neighborhood, and (3) we introduce two novel perturbations: the reinsertion of a customer and that of a commodity into the IRP solution. We also derive a new lower bound based on a flow relaxation. In order to stimulate the research on large-scale IRP, we introduce a library of industrial instances. We benchmark our algorithms on these instances and make our code open-source. Extensive numerical experiments highlight the relevance of each component of our LNS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源