论文标题
IRS辅助窃听MIMO通信的保密分析:基本限制和系统设计
Secrecy Analysis for IRS-aided Wiretap MIMO Communications: Fundamental Limits and System Design
论文作者
论文摘要
为了满足未来创新应用的要求,已经做出了许多努力,超过了香农理论所预测的限制。除了调查诸如安全,延迟和语义之类的远方指标外,另一个方向是通过利用智能反射表面(IRS)共同设计收发器和环境。在本文中,我们考虑了IRS辅助多输入多输出(MIMO)安全通信的分析和设计,这引起了很多研究的关注,但仍处于起步阶段。例如,尽管它们的重要性,但文献中尚未提供IRS辅助MIMO通信的基本限制。在本文中,我们将通过确定千古保密率(ESR)和保密中断概率(SOP)来研究这些基本限制。为此,通过利用随机矩阵理论(RMT),得出了IRS辅助MIMO安全通道的共同信息(MI)统计的联合分布(MI)统计数据的中心极限定理(CLT)。然后,派生的CLT用于获得ESR和SOP的闭合形式表达式,该表达式也延伸到了具有多个多腹腔窃听器的方案。根据理论结果,提出了最大化人工噪声(AN)辅助ESR并最小化SOP的算法。数值结果验证了所提出的优化算法的理论结果和有效性的准确性。
In order to meet the demands of future innovative applications, many efforts have been made to exceed the limits predicted by Shannon's Theory. Besides the investigation of beyond-Shannon metrics such as security, latency, and semantics, another direction is to jointly design the transceiver and the environment by utilizing the intelligent reflecting surface (IRS). In this paper, we consider the analysis and design of IRS-aided multiple-input multiple-output (MIMO) secure communications, which has attracted much research attention but still in its infancy. For example, despite their importance, the fundamental limits of IRS-aided wiretap MIMO communications are not yet available in the literature. In this paper, we will investigate these fundamental limits by determining the ergodic secrecy rate (ESR) and secrecy outage probability (SOP). For that purpose, the central limit theorem (CLT) for the joint distributions of the mutual information (MI) statistics over the IRS-aided MIMO secure communication channel is derived by utilizing the random matrix theory (RMT). The derived CLT is then used to obtain the closed form expressions for the ESR and SOP, which are also extended to the scenario with multiple multi-antenna eavesdroppers. Based on the theoretical results, algorithms for maximizing the artificial noise (AN) aided ESR and minimizing the SOP are proposed. Numerical results validate the accuracy of the theoretical results and effectiveness of the proposed optimization algorithms.