论文标题

测试科学建模软件中的因果关系

Testing Causality in Scientific Modelling Software

论文作者

Clark, Andrew G., Foster, Michael, Prifling, Benedikt, Walkinshaw, Neil, Hierons, Robert M., Schmidt, Volker, Turner, Robert D.

论文摘要

从模拟星系形成到大流行中的病毒传播,科学模型在发展科学理论和支持影响我们所有人的政府政策决策方面起着关键作用。鉴于这些关键应用,糟糕的建模假设或错误可能会带来深远的后果。但是,科学模型具有多种属性,使它们臭名昭著地测试,包括复杂的输入空间,长期执行时间和非确定性,使现有的测试技术变得不切实际。在研究人员寻求挑战性因果问题的答案等领域,一种称为因果推断的统计方法已经解决了类似的问题,从而得出了从嘈杂,有偏见和稀疏数据而不是昂贵的实验的因果结论的推论。本文介绍了因果测试框架:使用因果推理技术来从现有数据中建立因果效应的框架,使用户能够进行有关变化影响的软件测试活动,例如变质测试,后验。我们提供了三个涵盖现实世界科学模型的案例研究,证明了因果测试框架如何从重新使用的混杂测试数据中推断出变质测试结果,以提供有效的解决方案来测试科学建模软件。

From simulating galaxy formation to viral transmission in a pandemic, scientific models play a pivotal role in developing scientific theories and supporting government policy decisions that affect us all. Given these critical applications, a poor modelling assumption or bug could have far-reaching consequences. However, scientific models possess several properties that make them notoriously difficult to test, including a complex input space, long execution times, and non-determinism, rendering existing testing techniques impractical. In fields such as epidemiology, where researchers seek answers to challenging causal questions, a statistical methodology known as Causal Inference has addressed similar problems, enabling the inference of causal conclusions from noisy, biased, and sparse data instead of costly experiments. This paper introduces the Causal Testing Framework: a framework that uses Causal Inference techniques to establish causal effects from existing data, enabling users to conduct software testing activities concerning the effect of a change, such as Metamorphic Testing, a posteriori. We present three case studies covering real-world scientific models, demonstrating how the Causal Testing Framework can infer metamorphic test outcomes from reused, confounded test data to provide an efficient solution for testing scientific modelling software.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源