论文标题
Ilocater低温恒温器和热控制系统:实现极其精确的径向速度测量值
The iLocater cryostat and thermal control system: enabling extremely precise radial velocity measurements for diffraction-limited spectrographs
论文作者
论文摘要
极其精确的径向速度(EPRV)测量对于表征附近的陆地世界至关重要。 $σ_ {\ mathrm {rv}} = 1-10 \,\ mathrm {cm/s} $的EPRV仪器精度是在研究地球 - 分析系统上,在多普勒谱图设计上施加严格的,Sub-Mk,Sub-Mk,Hexter-Mechical稳定性要求。 Ilocater是一个新的高分辨率($ r = 190,500美元的中位数),附近是正在建造的红外(NIR)EPRV光谱仪,直径为8.4 m大的大型双筒望远镜(LBT)。该仪器是使用自适应光学元件和单模纤维在衍射限制式方案中最早操作的仪器之一。这有助于使用本质上稳定的材料对光谱仪的负担得起的光力制造。 我们介绍了容纳仪器光谱仪的Ilocater低温恒温器和热控制系统的最终设计和性能。光谱仪位于安装在多层绝缘(MLI)衬里的真空室内的主动温度控制的辐射屏蔽层内。辐射屏蔽提供了子-MK的热稳定性,建立在可居住区的行星查找器(HPF)和NEID仪器的现有遗产上。仪器工作温度($ t = 80-100 \,\ Mathrm {k} $)是由最大程度地减少用于光谱制造材料的热膨胀(CTE)的探测器背景和瞬时系数的要求所驱动的。这种组合可以减少对测量精度的热机械影响,从而提高仪器的科学能力。
Extremely precise radial velocity (EPRV) measurements are critical for characterizing nearby terrestrial worlds. EPRV instrument precisions of $σ_{\mathrm{RV}} = 1-10\,\mathrm{cm/s}$ are required to study Earth-analog systems, imposing stringent, sub-mK, thermo-mechanical stability requirements on Doppler spectrograph designs. iLocater is a new, high-resolution ($R=190,500$ median) near infrared (NIR) EPRV spectrograph under construction for the dual 8.4 m diameter Large Binocular Telescope (LBT). The instrument is one of the first to operate in the diffraction-limited regime enabled by the use of adaptive optics and single-mode fibers. This facilitates affordable optomechanical fabrication of the spectrograph using intrinsically stable materials. We present the final design and performance of the iLocater cryostat and thermal control system which houses the instrument spectrograph. The spectrograph is situated inside an actively temperature-controlled radiation shield mounted inside a multi-layer-insulation (MLI) lined vacuum chamber. The radiation shield provides sub-mK thermal stability, building on the existing heritage of the Habitable-zone Planet Finder (HPF) and NEID instruments. The instrument operating temperature ($T=80-100\,\mathrm{K}$) is driven by the requirement to minimize detector background and instantaneous coefficient of thermal expansion (CTE) of the materials used for spectrograph fabrication. This combination allows for a reduced thermomechanical impact on measurement precision, improving the scientific capabilities of the instrument.