论文标题

从叶子中学习树结构的粒子衰变重建

Learning Tree Structures from Leaves For Particle Decay Reconstruction

论文作者

Kahn, James, Tsaklidis, Ilias, Taubert, Oskar, Reuter, Lea, Dujany, Giulio, Boeckh, Tobias, Thaller, Arthur, Goldenzweig, Pablo, Bernlochner, Florian, Streit, Achim, Götz, Markus

论文摘要

在这项工作中,我们提出了一种神经方法,用于重建描述层次相互作用的生根树图,使用新颖的表示,我们将最低的共同祖先世代(LCAG)矩阵称为。这种紧凑的配方等效于邻接矩阵,但是如果直接使用邻接矩阵,则可以单独从叶子中学习树的结构,而无需先前的假设。因此,采用LCAG启用了第一个端到端的训练解决方案,该解决方案仅使用末端树叶直接学习不同树大小的层次结构。在高能量粒子物理学的情况下,粒子衰减形成了一个分层树结构,只能通过实验观察到最终产物,并且可能树的大型组合空间使分析溶液具有棘手的困扰。我们证明了LCAG用作使用变压器编码器和神经关系编码器图形神经网络的模拟粒子物理衰减结构的任务。通过这种方法,我们能够正确预测LCAG纯粹是从Leaf特征中的LCAG,最大的树木在$ 92.5 \%$ 92.5 \%的树库中,最高$ 6 $叶子(包括)和$ 59.7 \%\%\%的树木$ $ $ 10 $ $ 10 $在我们的模拟数据集中。

In this work, we present a neural approach to reconstructing rooted tree graphs describing hierarchical interactions, using a novel representation we term the Lowest Common Ancestor Generations (LCAG) matrix. This compact formulation is equivalent to the adjacency matrix, but enables learning a tree's structure from its leaves alone without the prior assumptions required if using the adjacency matrix directly. Employing the LCAG therefore enables the first end-to-end trainable solution which learns the hierarchical structure of varying tree sizes directly, using only the terminal tree leaves to do so. In the case of high-energy particle physics, a particle decay forms a hierarchical tree structure of which only the final products can be observed experimentally, and the large combinatorial space of possible trees makes an analytic solution intractable. We demonstrate the use of the LCAG as a target in the task of predicting simulated particle physics decay structures using both a Transformer encoder and a Neural Relational Inference encoder Graph Neural Network. With this approach, we are able to correctly predict the LCAG purely from leaf features for a maximum tree-depth of $8$ in $92.5\%$ of cases for trees up to $6$ leaves (including) and $59.7\%$ for trees up to $10$ in our simulated dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源