论文标题
中性介子混合的分散分析
Dispersive analysis of neutral meson mixing
论文作者
论文摘要
我们通过直接解决两个介子质量特征状态的质量和宽度差异来分析中性介子混合。我们为参数$ x $和$ y $求解,分别与符合魅力混合的质量和宽度差异成正比,将大量$ s $ s $ s $ s $ s $ s $ s $ s $ s $ d $ d $ d $ n $ p的盒子贡献用于$ x(s)$ y(s)$和$ y(s)$。 SU(3)对称性破坏是通过$ y(s)$的不同$ d $ Meson衰减频道的物理阈值引入的。这些取决于阈值的效果,就像QCD和规则中的非扰动功率校正一样,稳定$ y(s = m_d^2)$的解决方案,并使用$ d $ d $ MESON MASS $ M_D $。然后,我们通过$ y(s)$的色散集成来计算$ x(s)$,并表明我们的预测$ x(m_d^2)\大约0.21 \%$和$ y(m_d^2)\约0.52 \%$与两个$ cp $ cosserving和$ cp $ - violate-violation-violate-violate-violate-violate-violate-violate case in cpp able cp $ cp $ cp $ cp $ cp $。据观察,包含Di-Kaon状态的通道提供了SU(3)破裂的主要来源,该通道相对于扰动结果增强了$ x(m_d^2)$和$ y(m_d^2)$(m_d^2)$。我们还可以预测,与$ | Q/p | -1 \ 2 \ times 10^{ - 4} $和$ arg(q/p)\ 6 \ times 10^{ - 3} $度相关的系数比率$ q/p $与$ | q/p | -1 \ 2 \ times 10^{ - 4} $ 2 \ times 10^{ - 4} $ gerrees,可以通过确切的未来测量值对其进行仔细检查。形式主义扩展到对$ b_ {s(d)} $梅森混合和kaon混合的研究,以及所获得的宽度差异与扰动输入的小偏差解释了为什么可以通过短距离动力学来理解上述混合。我们声称,令人困惑的魅力混合归因于强烈的Glashow-iliopoulos-Maiani在扰动贡献中的抑制,而不是仅在15 \%水平上发生的夸克 - 戴隆偶性的崩溃。
We analyze the neutral meson mixing by directly solving the dispersion relation obeyed by the mass and width differences of the two meson mass eigenstates. We solve for the parameters $x$ and $y$, proportional to the mass and width differences in the charm mixing, respectively, taking the box-diagram contributions to $x(s)$ and $y(s)$ at large mass squared $s$ of a fictitious $D$ meson as inputs. The SU(3) symmetry breaking is introduced through physical thresholds of different $D$ meson decay channels for $y(s)$. These threshold-dependent effects, acting like nonperturbative power corrections in QCD sum rules, stabilize the solutions of $y(s=m_D^2)$ with the $D$ meson mass $m_D$. We then calculate $x(s)$ through the dispersive integration of $y(s)$, and show that our predictions $x(m_D^2)\approx 0.21\%$ and $y(m_D^2)\approx 0.52\%$ are close to the data in both $CP$-conserving and $CP$-violating cases. It is observed that the channel containing di-kaon states provides the major source of SU(3) breaking, which enhances $x(m_D^2)$ and $y(m_D^2)$ by four orders of magnitude relative to the perturbative results. We also predict the coefficient ratio $q/p$ involved in the charm mixing with $|q/p|-1\approx 2\times 10^{-4}$ and $Arg(q/p)\approx 6\times 10^{-3}$ degrees, which can be scrutinized by precise future measurements. The formalism is extended to studies of the $B_{s(d)}$ meson mixing and the kaon mixing, and the small deviations of the obtained width differences from the perturbative inputs explain why the above mixing can be understood via short-distance dynamics. We claim that the puzzling charm mixing is attributed to the strong Glashow-Iliopoulos-Maiani suppression on perturbative contributions, instead of to breakdown of the quark-hadron duality, which occurs only at 15\% level.