论文标题

实用的操作员草图框架用于加速迭代数据驱动解决方案的逆问题框架

Practical Operator Sketching Framework for Accelerating Iterative Data-Driven Solutions in Inverse Problems

论文作者

Tang, Junqi, Xu, Guixian, Mukherjee, Subhadip, Schönlieb, Carola-Bibiane

论文摘要

我们提出了一个新的操作员 - 勾选范式,用于设计有效的迭代迭代数据驱动重建(IDR)方案,例如插入算法和深层展开网络。这些IDR方案当前是成像反问题的最新解决方案。但是,对于高维成像任务,尤其是X射线CT和MRI成像,这些IDR方案在计算方面通常都在效率低下,这是由于需要多次计算高维正向和伴随运算符。在这项工作中,我们基于利用随机优化的素描技术来探索并提出了一个通用维度降低框架,以加速IDR方案,以求解成像逆问题。使用此框架,我们得出了许多加速的IDR方案,例如插入和播放的多阶段素描梯度(PNP-MS2G)和基于素描的原始偶(LSPD和SK-LSPD)深度分发网络。同时,对于完全加速的PNP方案,当Denoisers在计算上的昂贵时,我们提供了新颖的随机懒惰的Denoising方案(Lazy-PNP和Lazy-PNP-EQ),利用Proxskip方案进行优化和等价的图像Denoisers,可以大大加速PNP Algorith,以改善pnp Algorithm,以提高其性能。我们提供理论分析,以保证拟议框架的实例恢复保证。我们关于自然图像处理和层析成像图像重建的数值实验证明了我们草绘的IDR方案的出色效率。

We propose a new operator-sketching paradigm for designing efficient iterative data-driven reconstruction (IDR) schemes, e.g. Plug-and-Play algorithms and deep unrolling networks. These IDR schemes are currently the state-of-the-art solutions for imaging inverse problems. However, for high-dimensional imaging tasks, especially X-ray CT and MRI imaging, these IDR schemes typically become inefficient both in terms of computation, due to the need of computing multiple times the high-dimensional forward and adjoint operators. In this work, we explore and propose a universal dimensionality reduction framework for accelerating IDR schemes in solving imaging inverse problems, based on leveraging the sketching techniques from stochastic optimization. Using this framework, we derive a number of accelerated IDR schemes, such as the plug-and-play multi-stage sketched gradient (PnP-MS2G) and sketching-based primal-dual (LSPD and Sk-LSPD) deep unrolling networks. Meanwhile, for fully accelerating PnP schemes when the denoisers are computationally expensive, we provide novel stochastic lazy denoising schemes (Lazy-PnP and Lazy-PnP-EQ), leveraging the ProxSkip scheme in optimization and equivariant image denoisers, which can massively accelerate the PnP algorithms with improved practicality. We provide theoretical analysis for recovery guarantees of instances of the proposed framework. Our numerical experiments on natural image processing and tomographic image reconstruction demonstrate the remarkable effectiveness of our sketched IDR schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源