论文标题
让我们建造桥梁:理解和扩展扩散生成模型
Let us Build Bridges: Understanding and Extending Diffusion Generative Models
论文作者
论文摘要
基于扩散的生成模型最近取得了令人鼓舞的结果,但是从概念理解,理论分析,算法改进和扩展到离散的,结构化的,非欧盟域的扩展方面提出了一系列开放问题。这项工作试图重新研究整体框架,以获得更好的理论理解并为来自任意域的数据开发算法扩展。通过将扩散模型视为具有未观察到的扩散轨迹的潜在变量模型,并将最大的似然估计(MLE)应用于辅助分布中估算的潜在轨迹,我们表明,模型的构建和潜在轨迹的插入量相当于构建构造扩散值的扩散值,从而实现确定性的工具,以实现确定性的工具,并为我们提供一个系统和一个系统的系统。利用我们的框架,我们提出了1)学习扩散生成模型的第一个理论错误分析,以及2)一种简单而统一的方法,用于从不同离散和受约束域中学习数据。实验表明,我们的方法在生成图像,语义片段和3D点云方面表现出色。
Diffusion-based generative models have achieved promising results recently, but raise an array of open questions in terms of conceptual understanding, theoretical analysis, algorithm improvement and extensions to discrete, structured, non-Euclidean domains. This work tries to re-exam the overall framework, in order to gain better theoretical understandings and develop algorithmic extensions for data from arbitrary domains. By viewing diffusion models as latent variable models with unobserved diffusion trajectories and applying maximum likelihood estimation (MLE) with latent trajectories imputed from an auxiliary distribution, we show that both the model construction and the imputation of latent trajectories amount to constructing diffusion bridge processes that achieve deterministic values and constraints at end point, for which we provide a systematic study and a suit of tools. Leveraging our framework, we present 1) a first theoretical error analysis for learning diffusion generation models, and 2) a simple and unified approach to learning on data from different discrete and constrained domains. Experiments show that our methods perform superbly on generating images, semantic segments and 3D point clouds.