论文标题
BioSlam:一种由生物启发的终身记忆系统,用于一般地点识别
BioSLAM: A Bio-inspired Lifelong Memory System for General Place Recognition
论文作者
论文摘要
我们提出了BioSlam,这是一个终生的SLAM框架,用于逐步学习各种新出现,并在先前访问的地区保持准确的位置识别。与人类不同,人工神经网络遭受灾难性遗忘的困扰,并在接受新来者训练时可能会忘记先前访问的地区。对于人类而言,研究人员发现,大脑中存在一种记忆重播机制,可以使神经元保持活跃。受到这一发现的启发,Bioslam设计了一个封闭式的生成重播,以基于反馈奖励来控制机器人的学习行为。具体而言,BioSlam提供了一种新型的双记忆机制来维护:1)动态记忆有效地学习新观察结果,以及2)平衡新老知识的静态记忆。当与基于视觉/激光雷达的大满贯系统结合使用时,完整的处理管道可以帮助代理逐渐更新位置识别能力,从而稳健地对长期位置识别的复杂性的增加。我们在两个渐进式猛击场景中展示了Bioslam。在第一种情况下,基于激光雷达的特工不断地穿越具有120公里轨迹的城市规模环境,并遇到了不同类型的3D几何形状(开放街,住宅区,商业建筑)。我们表明,BioSlam可以逐步更新代理的位置识别能力,并优于最先进的增量方法,即生成重播,比24%。在第二种情况下,基于激光镜的代理在4.5公里的轨迹上反复穿越校园规模的区域。 Bioslam可以保证在不同外观下的最先进方法比最先进的方法优于15%的地方识别精度。据我们所知,BioSlam是第一个有助于长期导航任务中逐步识别的终身记忆力大满贯系统。
We present BioSLAM, a lifelong SLAM framework for learning various new appearances incrementally and maintaining accurate place recognition for previously visited areas. Unlike humans, artificial neural networks suffer from catastrophic forgetting and may forget the previously visited areas when trained with new arrivals. For humans, researchers discover that there exists a memory replay mechanism in the brain to keep the neuron active for previous events. Inspired by this discovery, BioSLAM designs a gated generative replay to control the robot's learning behavior based on the feedback rewards. Specifically, BioSLAM provides a novel dual-memory mechanism for maintenance: 1) a dynamic memory to efficiently learn new observations and 2) a static memory to balance new-old knowledge. When combined with a visual-/LiDAR- based SLAM system, the complete processing pipeline can help the agent incrementally update the place recognition ability, robust to the increasing complexity of long-term place recognition. We demonstrate BioSLAM in two incremental SLAM scenarios. In the first scenario, a LiDAR-based agent continuously travels through a city-scale environment with a 120km trajectory and encounters different types of 3D geometries (open streets, residential areas, commercial buildings). We show that BioSLAM can incrementally update the agent's place recognition ability and outperform the state-of-the-art incremental approach, Generative Replay, by 24%. In the second scenario, a LiDAR-vision-based agent repeatedly travels through a campus-scale area on a 4.5km trajectory. BioSLAM can guarantee the place recognition accuracy to outperform 15\% over the state-of-the-art approaches under different appearances. To our knowledge, BioSLAM is the first memory-enhanced lifelong SLAM system to help incremental place recognition in long-term navigation tasks.