论文标题

通过健康监测和重新配置的系统弹性

System Resilience through Health Monitoring and Reconfiguration

论文作者

Matei, Ion, Piotrowski, Wiktor, Perez, Alexandre, de Kleer, Johan, Tierno, Jorge, Mungovan, Wendy, Turnewitsch, Vance

论文摘要

我们展示了一个端到端框架,以提高人造系统对不可预见事件的弹性。该框架基于基于物理的数字双胞胎模型和三个负责实时故障诊断,预后和重新配置的模块。故障诊断模块使用基于模型的诊断算法来检测和隔离断层,并在系统中产生干预措施,以消除不确定的诊断解决方案。我们通过使用基于物理学的数字双胞胎的并行模型来扩展故障诊断算法为所需的实时性能。预后模块跟踪故障进度,并训练在线退化模型,以计算系统组件的剩余使用寿命。此外,我们使用降解模型来评估断层进程对操作要求的影响。重新配置模块使用基于PDDL的计划,并带有语义附件来调整系统控件,从而最大程度地减少了对系统操作的故障影响。我们定义一个弹性度量,并以燃料系统模型的示例来证明该指标如何通过我们的框架改进。

We demonstrate an end-to-end framework to improve the resilience of man-made systems to unforeseen events. The framework is based on a physics-based digital twin model and three modules tasked with real-time fault diagnosis, prognostics and reconfiguration. The fault diagnosis module uses model-based diagnosis algorithms to detect and isolate faults and generates interventions in the system to disambiguate uncertain diagnosis solutions. We scale up the fault diagnosis algorithm to the required real-time performance through the use of parallelization and surrogate models of the physics-based digital twin. The prognostics module tracks the fault progressions and trains the online degradation models to compute remaining useful life of system components. In addition, we use the degradation models to assess the impact of the fault progression on the operational requirements. The reconfiguration module uses PDDL-based planning endowed with semantic attachments to adjust the system controls so that the fault impact on the system operation is minimized. We define a resilience metric and use the example of a fuel system model to demonstrate how the metric improves with our framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源