论文标题

MAPTR:在线矢量化高清图构建的结构化建模和学习

MapTR: Structured Modeling and Learning for Online Vectorized HD Map Construction

论文作者

Liao, Bencheng, Chen, Shaoyu, Wang, Xinggang, Cheng, Tianheng, Zhang, Qian, Liu, Wenyu, Huang, Chang

论文摘要

高清(HD)地图提供了驾驶现场的丰富而精确的环境信息,是用于计划自主驾驶系统计划的基本和必不可少的组件。我们提出MAPTR,这是一种结构化的端到端变压器,用于有效的在线矢量化高清图构建。我们提出了一种统一的置换等效建模方法,即建模地图元素作为具有一组等效排列的点集,该置换量可以准确地描述地图元素的形状并稳定学习过程。我们设计了一个层次查询嵌入方案,以灵活地编码结构化的地图信息并对地图元素学习执行层次结构匹配。 MAPTR仅在Nuscenes数据集上现有的矢量化MAP构造方法中仅相机输入来实现最佳性能和效率。特别是,MAPTR-NANO以RTX 3090的实时推理速度($ 25.1 $ fps)运行,比现有的基于最新的摄像头方法快$ 8 \ times $,而实现$ 5.0 $ 5.0 $较高的地图。即使与现有的最先进的多模式方法相比,MAPTR-NANO的地图$ 0.7 $,Maptr-tiny达到了$ 13.5 $更高的地图和$ 3 \ $ 3 \ times $ $更快的推理速度。丰富的定性结果表明,MAPTR在复杂和各种驾驶场景中保持稳定且稳健的地图构造质量。 MAPTR在自动驾驶中具有巨大的应用价值。可以在\ url {https://github.com/hustvl/maptr}上获得代码和更多演示。

High-definition (HD) map provides abundant and precise environmental information of the driving scene, serving as a fundamental and indispensable component for planning in autonomous driving system. We present MapTR, a structured end-to-end Transformer for efficient online vectorized HD map construction. We propose a unified permutation-equivalent modeling approach, i.e., modeling map element as a point set with a group of equivalent permutations, which accurately describes the shape of map element and stabilizes the learning process. We design a hierarchical query embedding scheme to flexibly encode structured map information and perform hierarchical bipartite matching for map element learning. MapTR achieves the best performance and efficiency with only camera input among existing vectorized map construction approaches on nuScenes dataset. In particular, MapTR-nano runs at real-time inference speed ($25.1$ FPS) on RTX 3090, $8\times$ faster than the existing state-of-the-art camera-based method while achieving $5.0$ higher mAP. Even compared with the existing state-of-the-art multi-modality method, MapTR-nano achieves $0.7$ higher mAP, and MapTR-tiny achieves $13.5$ higher mAP and $3\times$ faster inference speed. Abundant qualitative results show that MapTR maintains stable and robust map construction quality in complex and various driving scenes. MapTR is of great application value in autonomous driving. Code and more demos are available at \url{https://github.com/hustvl/MapTR}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源