论文标题

使用轨道优化,更少的Qubits来提高变异量子本质体的准确性

Improving the Accuracy of Variational Quantum Eigensolvers With Fewer Qubits Using Orbital Optimization

论文作者

Bierman, Joel, Li, Yingzhou, Lu, Jianfeng

论文摘要

近期的量子计算机将受到限制,它们可以处理信息以及可以连贯执行的电路的深度。出于这个原因,迄今为止的算法(例如变异量子量化(VQE))的实验证明已限于小分子。在这项工作中,我们建议将轨道优化方案纳入量子本质量,其中将参数化的部分单位转换应用于设置的基础函数,以减少给定问题所需的量子数。通过将基态能量相对于此部分单位矩阵,可以找到最佳转化。通过对高达16个自旋轨道的小分子的数值模拟,我们证明了该方法具有大大扩展近期量子计算机在电子结构问题方面的能力。我们发现,与传统VQE相比,与使用更多Qubits相比,与传统VQE相比,与传统VQE相比,VQE与传统VQE相比,与传统VQE相比,与传统VQE相比,与传统VQE相比,与传统VQE相比,与传统的VQE相比,与使用更多Qubits的VQE方法相比,与传统VQE相比,VQE始终达到较低的基态能量。

Near-term quantum computers will be limited in the number of qubits on which they can process information as well as the depth of the circuits that they can coherently carry out. To-date, experimental demonstrations of algorithms such as the Variational Quantum Eigensolver (VQE) have been limited to small molecules using minimal basis sets for this reason. In this work we propose incorporating an orbital optimization scheme into quantum eigensolvers wherein a parameterized partial unitary transformation is applied to the basis functions set in order to reduce the number of qubits required for a given problem. The optimal transformation is found by minimizing the ground state energy with respect to this partial unitary matrix. Through numerical simulations of small molecules up to 16 spin orbitals, we demonstrate that this method has the ability to greatly extend the capabilities of near-term quantum computers with regard to the electronic structure problem. We find that VQE paired with orbital optimization consistently achieves lower ground state energies than traditional VQE when using the same number of qubits and even frequently achieves lower ground state energies than VQE methods using more qubits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源