论文标题
图形类别的一阶转导
On first-order transductions of classes of graphs
论文作者
论文摘要
我们研究了图类类别上一阶转序的各个方面,该方面提供了一种基于是否可以使用一阶(FO)逻辑公式编码另一个配方的图形类相对复杂性的方法。与Monadic二阶逻辑的转导准顺序的猜想的简单性相反,Fo-Transduction准阶非常复杂,并且从结构图理论和模型理论中自然出现了许多来自结构图理论的标准属性。我们证明了用于转导的局部正常形式,以及其他一般结果和构造,我们通过几个示例和某些简单类别的转换的特征来说明。然后,我们转向准阶的各个方面,包括某些属性的最小和最大类的(非)存在,路径层次结构的严格性,准级不是晶格的事实,以及弱稀疏类在准阶中的作用。
We study various aspects of the first-order transduction quasi-order on graph classes, which provides a way of measuring the relative complexity of graph classes based on whether one can encode the other using a formula of first-order (FO) logic. In contrast with the conjectured simplicity of the transduction quasi-order for monadic second-order logic, the FO-transduction quasi-order is very complex, and many standard properties from structural graph theory and model theory naturally appear in it. We prove a local normal form for transductions among other general results and constructions, which we illustrate via several examples and via the characterizations of the transductions of some simple classes. We then turn to various aspects of the quasi-order, including the (non-)existence of minimum and maximum classes for certain properties, the strictness of the pathwidth hierarchy, the fact that the quasi-order is not a lattice, and the role of weakly sparse classes in the quasi-order.