论文标题
一般单调傅立叶系数的函数的二维硬木定理
Two-dimensional Hardy-Littlewood theorem for functions with general monotone Fourier coefficients
论文作者
论文摘要
我们证明了二维的耐铁木定理的功能,其傅立叶系数符合一般单调性条件,并且重要的是不一定是正面的。结果的清晰度由反例给出,这表明,如果一个人略微扩展了所考虑的系数类别,则强壮的小木关系失败。
We prove the Hardy-Littlewood theorem in two dimensions for functions whose Fourier coefficients obey general monotonicity conditions and, importantly, are not necessarily positive. The sharpness of the result is given by a counterexample, which shows that if one slightly extends the considered class of coefficients, the Hardy-Littlewood relation fails.