论文标题

Meloform:基于专家系统和神经网络的音乐形式产生旋律

MeloForm: Generating Melody with Musical Form based on Expert Systems and Neural Networks

论文作者

Lu, Peiling, Tan, Xu, Yu, Botao, Qin, Tao, Zhao, Sheng, Liu, Tie-Yan

论文摘要

人通常通过按音乐形式组织元素来表达音乐思想来创作音乐。但是,对于基于神经网络的音乐生成,由于缺乏音乐形式的标签数据,很难这样做。在本文中,我们开发了Meloform,该系统使用专家系统和神经网络生成音乐形式的旋律。具体而言,1)我们设计了一个专家系统,可以通过开发从图案到短语的音乐元素到并根据预授予的音乐形式进行重复和变化的部分来产生旋律; 2)考虑到产生的旋律缺乏音乐丰富性,我们设计了一种基于变压器的改进模型,以改善旋律而不改变其音乐形式。 Meloform享有专家系统和通过神经模型的音乐丰富性学习的精确音乐形式控制的优势。主观和客观的实验评估都表明,Meloform以精确的音乐形式控制产生旋律,精度为97.79%,并且在主观评估评分方面的表现优于基线系统,其结构,主题,丰富性和整体质量在没有任何标记的音乐形式数据的情况下,其结构,主题,丰富性和整体质量的结构,主题,丰富性和整体质量。此外,Meloform可以支持各种形式,例如诗歌和合唱形式,隆多形式,变异形式,奏鸣曲形式,等等。

Human usually composes music by organizing elements according to the musical form to express music ideas. However, for neural network-based music generation, it is difficult to do so due to the lack of labelled data on musical form. In this paper, we develop MeloForm, a system that generates melody with musical form using expert systems and neural networks. Specifically, 1) we design an expert system to generate a melody by developing musical elements from motifs to phrases then to sections with repetitions and variations according to pre-given musical form; 2) considering the generated melody is lack of musical richness, we design a Transformer based refinement model to improve the melody without changing its musical form. MeloForm enjoys the advantages of precise musical form control by expert systems and musical richness learning via neural models. Both subjective and objective experimental evaluations demonstrate that MeloForm generates melodies with precise musical form control with 97.79% accuracy, and outperforms baseline systems in terms of subjective evaluation score by 0.75, 0.50, 0.86 and 0.89 in structure, thematic, richness and overall quality, without any labelled musical form data. Besides, MeloForm can support various kinds of forms, such as verse and chorus form, rondo form, variational form, sonata form, etc.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源