论文标题

DLDNN:神经网络确定性的横向位移设计自动化

DLDNN: Deterministic Lateral Displacement Design Automation by Neural Networks

论文作者

Vatandoust, Farzad, Amiri, Hoseyn A., Mas-hafi, Sima

论文摘要

基于大小的生物颗粒/细胞的分离对于用于外泌体和DNA分离等应用的多种生物医学加工步骤至关重要。这种微流体设备的设计和改进是最好地回答生产均质最终结果的需求的挑战。确定性的侧向位移(DLD)利用了类似的原理,该原理在多年来引起了广泛关注。但是,缺乏对粒子轨迹及其诱导模式的预测理解,使设计DLD设备成为迭代过程。因此,本文研究了一个快速的多功能设计自动化平台来解决此问题。为此,采用了卷积和人工神经网络来学习速度场和广泛的DLD配置的临界直径。后来,将这些网络与多目标进化算法结合使用,以构建自动化工具。在确保神经网络的准确性之后,对开发的工具进行了12个关键条件测试。达到施加的条件,自动化组件可靠地执行,误差小于4%。此外,该工具可推广到其他基于现场的问题,并且由于神经网络是该方法不可或缺的一部分,因此可以为类似物理学进行转移学习。本研究中生成和使用的所有代码与预先训练的神经网络模型都可以在https://github.com/hoseynaamiri/dldnn上找到。

Size-based separation of bioparticles/cells is crucial to a variety of biomedical processing steps for applications such as exosomes and DNA isolation. Design and improvement of such microfluidic devices is a challenge to best answer the demand for producing homogeneous end-result for study and use. Deterministic lateral displacement (DLD) exploits a similar principle that has drawn extensive attention over years. However, the lack of predictive understanding of the particle trajectory and its induced mode makes designing a DLD device an iterative procedure. Therefore, this paper investigates a fast versatile design automation platform to address this issue. To do so, convolutional and artificial neural networks were employed to learn velocity fields and critical diameters of a wide range of DLD configurations. Later, these networks were combined with a multi-objective evolutionary algorithm to construct the automation tool. After ensuring the accuracy of the neural networks, the developed tool was tested for 12 critical conditions. Reaching the imposed conditions, the automation components performed reliably with errors of less than 4%. Moreover, this tool is generalizable to other field-based problems and since the neural network is an integral part of this method, it enables transfer learning for similar physics. All the codes generated and used in this study alongside the pre-trained neural network models are available on https://github.com/HoseynAAmiri/DLDNN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源