论文标题
使用可逆神经网络来应对逆光子设计中的多模式设备分布
Tackling Multimodal Device Distributions in Inverse Photonic Design using Invertible Neural Networks
论文作者
论文摘要
逆设计,将设备或过程参数匹配以展示所需性能的过程,在许多学科中都应用,从化学过程的材料设计到工程。机器学习已成为一种有希望的方法,以克服参数空间和多模式参数分布的维度施加的当前局限性。大多数传统的优化例程都假设设计参数与目标性能之间可逆的一对一映射。但是,可以通过不同的设计来实现可比性甚至相同的性能,从而使可能的解决方案的多模式分布到逆设计问题上,这会使优化算法混淆。在这里,我们展示了基于可逆神经网络的生成建模方法如何为逆设计问题提供可能的解决方案的完整分布,并解决具有多模式分布的纳米电视逆设计问题的歧义。我们实施了条件可转让的神经网络(CINN),并将其应用于原则纳米光子问题,包括定制由亚波长度凹痕铣削的金属膜的传输光谱。我们将方法与常用的条件变分自动编码器(CVAE)框架进行了比较,并在处理多模式设备分布时显示了提议的CINN的卓越灵活性和准确性。我们的工作表明,可逆神经网络为纳米科学和纳米技术的逆设计提供了一个有价值且多功能的工具包。
Inverse design, the process of matching a device or process parameters to exhibit a desired performance, is applied in many disciplines ranging from material design over chemical processes and to engineering. Machine learning has emerged as a promising approach to overcome current limitations imposed by the dimensionality of the parameter space and multimodal parameter distributions. Most traditional optimization routines assume an invertible one-to-one mapping between the design parameters and the target performance. However, comparable or even identical performance may be realized by different designs, yielding a multimodal distribution of possible solutions to the inverse design problem which confuses the optimization algorithm. Here, we show how a generative modeling approach based on invertible neural networks can provide the full distribution of possible solutions to the inverse design problem and resolve the ambiguity of nanodevice inverse design problems featuring multimodal distributions. We implement a Conditional Invertible Neural Network (cINN) and apply it to a proof-of-principle nanophotonic problem, consisting in tailoring the transmission spectrum of a metallic film milled by subwavelength indentations. We compare our approach with the commonly used conditional Variational Autoencoder (cVAE) framework and show the superior flexibility and accuracy of the proposed cINNs when dealing with multimodal device distributions. Our work shows that invertible neural networks provide a valuable and versatile toolkit for advancing inverse design in nanoscience and nanotechnology.