论文标题
扩散模型可预测2D显微镜图像的3D形状
A Diffusion Model Predicts 3D Shapes from 2D Microscopy Images
论文作者
论文摘要
扩散模型是一种特殊类型的生成模型,能够从学习分布中综合新数据。我们引入了Dispr,这是一个基于扩散的模型,用于解决从二维(2D)单细胞显微镜图像预测三维(3D)细胞形状的反问题。使用2D显微镜图像作为先验,可以进行调节以预测现实的3D形状重建。为了在基于功能的单细胞分类任务中展示DIPPR作为数据增强工具的适用性,我们从分为六个高度不平衡类别的红细胞中提取形态学特征。将DISPR预测的功能添加到三个少数班级将宏F1分数从$ f1_ \ text {macro} = 55.2 \ pm 4.6 \%$ to $ f1_ \%$ to $ f1_ \ text {macro} = 72.2 \ pm 4.9 \%$。因此,我们证明了扩散模型可以成功地应用于逆生物医学问题,并学会从2D显微镜图像中重建具有现实的形态特征的3D形状。
Diffusion models are a special type of generative model, capable of synthesising new data from a learnt distribution. We introduce DISPR, a diffusion-based model for solving the inverse problem of three-dimensional (3D) cell shape prediction from two-dimensional (2D) single cell microscopy images. Using the 2D microscopy image as a prior, DISPR is conditioned to predict realistic 3D shape reconstructions. To showcase the applicability of DISPR as a data augmentation tool in a feature-based single cell classification task, we extract morphological features from the red blood cells grouped into six highly imbalanced classes. Adding features from the DISPR predictions to the three minority classes improved the macro F1 score from $F1_\text{macro} = 55.2 \pm 4.6\%$ to $F1_\text{macro} = 72.2 \pm 4.9\%$. We thus demonstrate that diffusion models can be successfully applied to inverse biomedical problems, and that they learn to reconstruct 3D shapes with realistic morphological features from 2D microscopy images.