论文标题
信息因果原理合理化量子组成
Principle of information causality rationalizes quantum composition
论文作者
论文摘要
信息因果原理(作为无信号原理的概括)已有效地应用于超出量子相关性的非物理相关性。在这封信中,我们表明,正确利用时,可以为多部分量子系统的结构推导提供物理原理。根据没有信号条件状态和复合系统的效应空间,即使假定单个系统的描述为量子,复合系统的效果空间也可以允许不同的数学描述。尽管在一个极端,即最大张量产物组成,但状态空间变得非常异国情调,并且允许在量子理论中不允许的复合状态,但另一个极端 - 最小张量的产物组成 - 仅包含可分离的状态,而所产生的理论仅允许贝尔局部相关性。正如我们所表明的,这些组成都没有与信息因果关系相称,因此被无效成为对自然的善意描述。因此,信息因果关系有望为复合量子系统的状态和效应锥的自偶性提供信息理论推导。
Principle of information causality, proposed as a generalization of no signaling principle, has efficiently been applied to outcast beyond quantum correlations as unphysical. In this letter we show that this principle when utilized properly can provide physical rationale towards structural derivation of multipartite quantum systems. In accordance with no signaling condition state and effect spaces of a composite system can allow different possible mathematical descriptions even when description for the individual systems are assumed to be quantum. While in one extreme, namely the maximal tensor product composition, the state space becomes quite exotic and permits composite states that are not allowed in quantum theory, the other extreme -- minimal tensor product composition -- contains only separable states and the resulting theory allows only Bell local correlation. As we show, none of these compositions does commensurate with information causality, and hence get invalidated to be the bona-fide description of nature. Information causality, therefore, promises information theoretic derivation of self-duality of state and effect cones for composite quantum systems.