论文标题

一种新的反转方法来确定冠状磁场,包括无界吸收的影响

A novel inversion method to determine the coronal magnetic field including the impact of bound-free absorption

论文作者

Martinez-Sykora, Juan, Hansteen, Viggo H., De Pontieu, Bart, Landi, Enrico

论文摘要

磁场控制电晕;因此,这是要测量的关键参数。不幸的是,现有的估计强度技术受到强烈的假设和局限性的限制。这些技术包括使用电势或非线性无效方法的光球或色球场外推,基于冠状动脉学的估计,或通过在DKIST上进行的Cryo-NIRSP仪器进行直接观察,该仪器将测量冠状磁场,但仅在肢体上进行测量。或者,在这项工作中,我们研究了一种基于磁场诱导的(MIT)\ fex〜257.261〜Å的过渡。为了检查这种方法,我们合成了来自两个3D磁流失动力学模拟的几条\ fex \线,一种对新兴通量区域进行了建模,第二个建模为已建立的成熟活性区域。此外,我们考虑了中性氢和氦气以及单一离子化的氦气的无界吸收。在冠状高度处发生的凉爽血浆吸收对确定磁场有重大影响。我们详细研究了使用这些\ fex \线的挑战来测量其密度和温度依赖性。我们提出了一种新的方法,可以使用差分发射度量的反转来从MIT得出磁场,这是温度,密度和磁场的函数。这种方法成功地估计了没有明显吸收且具有相对强大的冠状磁场($> 250 $ 〜g)的区域中磁场强度(最高\%18相对误差)。该方法允许掩盖吸收意义的区域。

The magnetic field governs the corona; hence it is a crucial parameter to measure. Unfortunately, existing techniques for estimating its strength are limited by strong assumptions and limitations. These techniques include photospheric or chromospheric field extrapolation using potential or non-linear-force-free methods, estimates based on coronal seismology, or by direct observations via, e.g., the Cryo-NIRSP instrument on DKIST which will measure the coronal magnetic field, but only off the limb. Alternately, in this work we investigate a recently developed approach based on the magnetic-field-induced (MIT) transition of the \fex~257.261~Å. In order to examine this approach, we have synthesized several \fex\ lines from two 3D magnetohydrodynamic simulations, one modeling an emerging flux region and the second an established mature active region. In addition, we take bound-free absorption from neutral hydrogen and helium and singly ionised helium into account. The absorption from cool plasma that occurs at coronal heights has a significant impact on determining the magnetic field. We investigate in detail the challenges of using these \fex\ lines to measure the field, considering their density and temperature dependence. We present a novel approach to deriving the magnetic field from the MIT using inversions of the differential emission measure as a function of the temperature, density, and magnetic field. This approach successfully estimates the magnetic field strength (up to \%18 relative error) in regions that do not suffer from significant absorption and that have relatively strong coronal magnetic fields ($>250$~G). This method allows the masking of regions where absorption is significant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源