论文标题

$ n^{1,p} $ sobolev空间的反思性和可分离性的简单证明

A simple proof of reflexivity and separability of $N^{1,p}$ Sobolev spaces

论文作者

Alvarado, Ryan, Hajłasz, Piotr, Malý, Lukáš

论文摘要

我们提供了一个众所周知的Cheeger定理的基本证明,该证据指出,如果度量量$ x $支持$ p $-poincaré不平等,那么$ n^{1,p}(x)$ sobolev space是反射性的,并且在$ p \ in(1,\ infty)$时是反射性的。当$ p = 1 $时,我们还证明了空间的可分离性。我们的证明是基于在$ n^{1,p}(x)$,$ p \ in [1,\ infty)$上直接构造等效规范的,当$ p \ in(1,\ infty)$时,它是均匀凸出的。最后,我们明确构建了一个功能,当$ p \ in(1,\ infty)$时,与最小$ p $ - 效率上的梯度相当。

We present an elementary proof of a well-known theorem of Cheeger which states that if a metric-measure space $X$ supports a $p$-Poincaré inequality, then the $N^{1,p}(X)$ Sobolev space is reflexive and separable whenever $p\in (1,\infty)$. We also prove separability of the space when $p=1$. Our proof is based on a straightforward construction of an equivalent norm on $N^{1,p}(X)$, $p\in [1,\infty)$, that is uniformly convex when $p\in (1,\infty)$. Finally, we explicitly construct a functional that is pointwise comparable to the minimal $p$-weak upper gradient, when $p\in (1,\infty)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源