论文标题

使用粗粒智能手机日志对空间轨迹进行建模

Modeling Spatial Trajectories using Coarse-Grained Smartphone Logs

论文作者

Gupta, Vinayak, Bedathur, Srikanta

论文摘要

当前利益点(POI)建议的方法通过标准空间特征(例如POI坐标,社交网络等)来了解用户的偏好。这些模型忽略了空间移动性的关键方面 - 每个用户都可以随身携带智能手机。此外,随着隐私问题的越来越多,用户避免分享其确切的地理坐标和社交媒体活动。在本文中,我们提出了Revamp,这是一种顺序POI推荐方法,该方法利用智能手机应用程序(或应用程序)上的用户活动来识别其移动性偏好。这项工作与最近对在线城市用户的心理学研究保持一致,这表明他们的空间行动行为在很大程度上受其智能手机应用活动的活动影响。此外,我们对粗粒智能手机数据的建议是指以隐私意识的方式收集的数据日志,即仅由智能手机应用程序的(a)类别组成,以及(b)签入位置的类别。因此,改装并不易于精确的地理坐标,社交网络或要访问的特定应用程序。在自我注意力模型的功效下,我们使用两种形式的位置编码(绝对和相对)学习了用户的POI偏好,每种位置编码是从用户的登记中的签入动力学中提取的。来自中国的两个大规模数据集进行的广泛实验表明,改革的预测能力及其预测应用程序和POI类别的能力。

Current approaches for points-of-interest (POI) recommendation learn the preferences of a user via the standard spatial features such as the POI coordinates, the social network, etc. These models ignore a crucial aspect of spatial mobility -- every user carries their smartphones wherever they go. In addition, with growing privacy concerns, users refrain from sharing their exact geographical coordinates and their social media activity. In this paper, we present REVAMP, a sequential POI recommendation approach that utilizes the user activity on smartphone applications (or apps) to identify their mobility preferences. This work aligns with the recent psychological studies of online urban users, which show that their spatial mobility behavior is largely influenced by the activity of their smartphone apps. In addition, our proposal of coarse-grained smartphone data refers to data logs collected in a privacy-conscious manner, i.e., consisting only of (a) category of the smartphone app and (b) category of check-in location. Thus, REVAMP is not privy to precise geo-coordinates, social networks, or the specific application being accessed. Buoyed by the efficacy of self-attention models, we learn the POI preferences of a user using two forms of positional encodings -- absolute and relative -- with each extracted from the inter-check-in dynamics in the check-in sequence of a user. Extensive experiments across two large-scale datasets from China show the predictive prowess of REVAMP and its ability to predict app- and POI categories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源