论文标题
使用受控的几个fermions的总和解决标志问题的解决方案
A Solution to the Sign Problem Using a Sum of Controlled Few-Fermions
论文作者
论文摘要
提出了一种限制的路径积分方法,以模拟使用蒙特卡洛(Monte Carlo)在经典计算机上使用没有数值符号问题的经典计算机上的一种量子系统或哈密顿量的类型。然后证明普遍性断言,可以将任何有界的量子量子多项式时间(BQP)算法编码为可控的几个弗里及其的总和,并使用经典的蒙特卡洛有效地模拟。因此,BQP与有界概率的多项式时间(BPP)的类别完全相同,即BPP = BQP。
A restricted path integral method is proposed to simulate a type of quantum system or Hamiltonian called a sum of controlled few-fermions on a classical computer using Monte Carlo without a numerical sign problem. Then a universality is proven to assert that any bounded-error quantum polynomial time (BQP) algorithm can be encoded into a sum of controlled few-fermions and simulated efficiently using classical Monte Carlo. Therefore, BQP is precisely the same as the class of bounded-error probabilistic polynomial time (BPP), namely, BPP = BQP.