论文标题
通过安装马尔可夫速度模型来估计旅行时间的概率分布
Estimating Probability Distributions of Travel Times by Fitting a Markovian Velocity Model
论文作者
论文摘要
为了改善单个驱动因素的路由决策以及交通运营商设计的管理政策,需要对旅行时间分布的可靠估计。由于由复发模式(例如,高峰时间)和非循环事件(例如,交通事故)引起的交通拥堵导致了高速公路旅行时间的潜在延迟,因此我们专注于能够纳入这两种效果的框架。为此,我们建议根据环境背景过程与马尔可夫速度模型(MVM)合作,该过程跟踪随机和(半)可预测的事件,影响了高速公路网络中车辆的速度。我们展示了如何操作此灵活的数据驱动模型,以便获得在已知的日子和时间出发的车辆以遍历给定路径的旅行时间分布。具体来说,我们详细介绍了如何构建背景过程并设置与该过程不同状态相对应的速度级别。首先,为了包含非循环事件,我们研究了事件数据,以描述事件的随机持续时间和临时时间。他们俩都取决于一天中的时间,但是我们确定可以将它们视为时间独立的时期。其次,为了估计事件和事件间制度的速度模式,研究了每个已确定的时期的循环检测器数据。在使用荷兰高速公路网络的道路网络检测器数据的数值示例中,我们获得了在不同交通制度下出现的旅行时间分布估计,并说明了与传统的旅行时间预测方法相比的优势。
To improve the routing decisions of individual drivers and the management policies designed by traffic operators, one needs reliable estimates of travel time distributions. Since congestion caused by both recurrent patterns (e.g., rush hours) and non-recurrent events (e.g., traffic incidents) leads to potentially substantial delays in highway travel times, we focus on a framework capable of incorporating both effects. To this end, we propose to work with the Markovian Velocity model (MVM), based on an environmental background process that tracks both random and (semi-)predictable events affecting the vehicle speeds in a highway network. We show how to operationalize this flexible data-driven model in order to obtain the travel time distribution for a vehicle departing at a known day and time to traverse a given path. Specifically, we detail how to structure the background process and set the speed levels corresponding to the different states of this process. First, for the inclusion of non-recurrent events, we study incident data to describe the random durations of the incident and inter-incident times. Both of them depend on the time of day, but we identify periods in which they can be considered time-independent. Second, for an estimation of the speed patterns in both incident and inter-incident regime, loop detector data for each of the identified periods is studied. In numerical examples that use road network detector data of the Dutch highway network, we obtain the travel time distribution estimates that arise under different traffic regimes, and illustrate the advantages compared to traditional travel-time prediction methods.