论文标题

组成增强学习的分类语义

Categorical semantics of compositional reinforcement learning

论文作者

Bakirtzis, Georgios, Savvas, Michail, Topcu, Ufuk

论文摘要

强化学习(RL)中的组成知识表示有助于模块化,可解释和安全的任务规格。但是,生成的组成模型需要表征对组成特征的鲁棒性的最小假设,尤其是在功能分解的情况下。使用分类的观点,我们为RL组成理论开发了知识表示框架。我们的方法依赖于类别$ \ mathsf {MDP} $的理论研究,其对象是马尔可夫决策过程(MDP),该过程充当任务模型。分类语义通过应用类似于组合拼图零件的推动操作的应用来对任务的组成性进行建模。作为这些求职操作的实际应用,我们介绍了依赖于类别$ \ mathsf {mdp} $的构图保证的Zig-Zag图。我们进一步证明了类别$ \ mathsf {MDP} $ unify概念的属性,例如执行安全要求和利用对称性,从而概括了RL的先前抽象理论。

Compositional knowledge representations in reinforcement learning (RL) facilitate modular, interpretable, and safe task specifications. However, generating compositional models requires the characterization of minimal assumptions for the robustness of the compositionality feature, especially in the case of functional decompositions. Using a categorical point of view, we develop a knowledge representation framework for a compositional theory of RL. Our approach relies on the theoretical study of the category $\mathsf{MDP}$, whose objects are Markov decision processes (MDPs) acting as models of tasks. The categorical semantics models the compositionality of tasks through the application of pushout operations akin to combining puzzle pieces. As a practical application of these pushout operations, we introduce zig-zag diagrams that rely on the compositional guarantees engendered by the category $\mathsf{MDP}$. We further prove that properties of the category $\mathsf{MDP}$ unify concepts, such as enforcing safety requirements and exploiting symmetries, generalizing previous abstraction theories for RL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源