论文标题
部分可观测时空混沌系统的无模型预测
Coefficients at powers of logarithms in the HD+MSL renormalization scheme
论文作者
论文摘要
对于具有较高衍生物正规化的单个耦合常数的可重新分解理论,我们研究了在重新规定常数中存在的对数幂的系数,假设通过最小的对数减去差异去除差异。根据此(HD+MSL)重新归一化的处方,重归其化常数仅包含$ \lnλ/μ$的功率,其中$λ$和$μ$分别是尺寸正则化参数和重量化点。我们在耦合恒定重归化中存在的对数的幂和磁场重新归一化常数中的幂中构建一般的显式表达式,将它们与$β$功能相关联,并与相应的异常尺寸相关联。要检查正确性,我们将结果与$ {\ cal n} = 1 $ sqed和(对于超对称情况)进行的显式四循环计算进行比较,从NSVZ方程中进行了重新分配常数之间的关系。
For renormalizable theories with a single coupling constant regularized by higher derivatives we investigate the coefficients at powers of logarithms present in the renormalization constants assuming that divergences are removed by minimal subtractions of logarithms. According to this (HD+MSL) renormalization prescription the renormalization constants include only powers of $\lnΛ/μ$, where $Λ$ and $μ$ are the dimensionful regularization parameter and the renormalization point, respectively. We construct general explicit expressions for arbitrary coefficients at powers of this logarithm present in the coupling constant renormalization and in the field renormalization constant which relate them to the $β$-function and (in the latter case) to the corresponding anomalous dimension. To check the correctness, we compare the results with the explicit four-loop calculation made earlier for ${\cal N}=1$ SQED and (for the supersymmetric case) rederive a relation between the renormalization constants following from the NSVZ equation.