论文标题
部分可观测时空混沌系统的无模型预测
Modeling Adaptive Fine-grained Task Relatedness for Joint CTR-CVR Estimation
论文作者
论文摘要
在现代广告和推荐系统中,多任务学习(MTL)范式已被广泛用于共同预测各种用户反馈(例如,点击和购买)。尽管现有的MTL方法要么刚化以适应不同的场景,要么仅捕获粗粒度的任务相关性,从而使很难有效地跨任务传输知识。 为了解决这些问题,在本文中,我们提出了一种自适应的细粒度与任务相关性建模方法ADAFTR,以进行联合CTR-CVR估计。我们的方法是基于参数共享MTL架构开发的,并引入了一种基于对比度学习的新型自适应跨任务表示对准方法。启用实例,同一实例的任务间表示为正,而另一个随机实例的表示为负。此外,我们明确地将精细颗粒的任务相关性建模为实例水平上的对比度强度(即Infonce损失的温度系数)。为此,我们构建了一个相关性预测网络,以便它可以预测实例的任务间表示的对比强度。这样,我们可以以细粒度的方式(即实例级别)自适应地设置对比度学习的温度,从而更好地捕获与任务相关性。在阿里巴巴的真实广告系统中,通过公共电子商务数据集进行了离线评估和在线测试,都证明了我们方法的有效性。
In modern advertising and recommender systems, multi-task learning (MTL) paradigm has been widely employed to jointly predict diverse user feedbacks (e.g. click and purchase). While, existing MTL approaches are either rigid to adapt to different scenarios, or only capture coarse-grained task relatedness, thus making it difficult to effectively transfer knowledge across tasks. To address these issues, in this paper, we propose an Adaptive Fine-grained Task Relatedness modeling approach, AdaFTR, for joint CTR-CVR estimation. Our approach is developed based on a parameter-sharing MTL architecture, and introduces a novel adaptive inter-task representation alignment method based on contrastive learning.Given an instance, the inter-task representations of the same instance are considered as positive, while the representations of another random instance are considered as negative. Furthermore, we explicitly model fine-grained task relatedness as the contrast strength (i.e. the temperature coefficient in InfoNCE loss) at the instance level. For this purpose, we build a relatedness prediction network, so that it can predict the contrast strength for inter-task representations of an instance. In this way, we can adaptively set the temperature for contrastive learning in a fine-grained way (i.e. instance level), so as to better capture task relatedness. Both offline evaluation with public e-commerce datasets and online test in a real advertising system at Alibaba have demonstrated the effectiveness of our approach.