论文标题
部分可观测时空混沌系统的无模型预测
Rethinking Skip Connections in Encoder-decoder Networks for Monocular Depth Estimation
论文作者
论文摘要
跳过连接是编码器网络中的基本单元,它们能够改善神经网络的特征宣传。但是,大多数带有跳过连接的方法仅连接了编码器和解码器中相同分辨率的连接特征,这忽略了编码器中的信息损失,而图层的进度更深。为了利用编码器较浅层中特征的信息损失,我们提出了一个完整的跳过连接网络(FSCN),以实现单眼深度估计任务。此外,要更接近跳过连接中的功能,我们提出了一个自适应串联模块(ACM)。此外,我们对FSCN和FSCN的室内和室内数据集(即Kitti Dataste和Nyu Depth V2数据集)进行了广泛的实验。
Skip connections are fundamental units in encoder-decoder networks, which are able to improve the feature propagtion of the neural networks. However, most methods with skip connections just connected features with the same resolution in the encoder and the decoder, which ignored the information loss in the encoder with the layers going deeper. To leverage the information loss of the features in shallower layers of the encoder, we propose a full skip connection network (FSCN) for monocular depth estimation task. In addition, to fuse features within skip connections more closely, we present an adaptive concatenation module (ACM). Further more, we conduct extensive experiments on the ourdoor and indoor datasets (i.e., the KITTI dataste and the NYU Depth V2 dataset) for FSCN and FSCN gets the state-of-the-art results.