论文标题
部分可观测时空混沌系统的无模型预测
Joint Learning Content and Degradation Aware Feature for Blind Super-Resolution
论文作者
论文摘要
为了在盲图超级分辨率(SR)上取得有希望的结果,一些尝试利用低分辨率(LR)图像来预测内核并改善SR性能。但是,由于不可用的现实世界模糊内核,这些监督的内核预测(SKP)方法是不切实际的。尽管提出了一些无监督的退化预测(UDP)方法来绕过此问题,但\ textIt {contectiencentions}之间的\ textit {consistency}之间的降解嵌入和SR功能仍然具有挑战性。通过探索降解嵌入与SR功能之间的相关性,我们观察到共同学习内容和降解感知功能是最佳的。基于此观察结果,提出了一个名为CDSR的内容和退化的SR网络。具体而言,CDSR包含三个新建立的模块:(1)基于重量贴片的编码器(LPE)应用于共同提取内容和退化功能; (2)采用基于域查询的基于注意力的模块(DQA)来适应不一致; (3)基于代码的空格压缩模块(CSC),可以抑制冗余信息。对几个基准测试的广泛实验表明,即使与最先进的SKP方法相比,提出的CDSR的表现都超过了现有的UDP模型,并且在PSNR和SSIM上达到了竞争性能。
To achieve promising results on blind image super-resolution (SR), some attempts leveraged the low resolution (LR) images to predict the kernel and improve the SR performance. However, these Supervised Kernel Prediction (SKP) methods are impractical due to the unavailable real-world blur kernels. Although some Unsupervised Degradation Prediction (UDP) methods are proposed to bypass this problem, the \textit{inconsistency} between degradation embedding and SR feature is still challenging. By exploring the correlations between degradation embedding and SR feature, we observe that jointly learning the content and degradation aware feature is optimal. Based on this observation, a Content and Degradation aware SR Network dubbed CDSR is proposed. Specifically, CDSR contains three newly-established modules: (1) a Lightweight Patch-based Encoder (LPE) is applied to jointly extract content and degradation features; (2) a Domain Query Attention based module (DQA) is employed to adaptively reduce the inconsistency; (3) a Codebook-based Space Compress module (CSC) that can suppress the redundant information. Extensive experiments on several benchmarks demonstrate that the proposed CDSR outperforms the existing UDP models and achieves competitive performance on PSNR and SSIM even compared with the state-of-the-art SKP methods.