论文标题
通过面部识别模型来解释人口偏见
Towards Explaining Demographic Bias through the Eyes of Face Recognition Models
论文作者
论文摘要
数据和算法中固有的偏见使得基于广泛的机器学习(ML)的决策系统的公平性不如最佳。为了提高这种ML决策系统的信任性,至关重要的是要意识到这些解决方案中的固有偏见并使它们对公众和开发商更加透明。在这项工作中,我们旨在提供一组解释性工具,以分析处理不同人口组时面部识别模型行为的差异。我们通过利用基于激活图的高阶统计信息来构建可解释性工具来做到这一点,以将FR模型的行为差异与某些面部区域联系起来。与参考组相比,在两个数据集和两个面部识别模型上的实验结果指出了FR模型对某些人群组的反应不同。这些分析的结果有趣地与分析人体测量学差异和人类判断差异的研究结果非常相吻合。因此,这是第一项专门解释不同人群组上FR模型的偏见行为并将其直接链接到空间面部特征的研究。该代码在这里公开可用。
Biases inherent in both data and algorithms make the fairness of widespread machine learning (ML)-based decision-making systems less than optimal. To improve the trustfulness of such ML decision systems, it is crucial to be aware of the inherent biases in these solutions and to make them more transparent to the public and developers. In this work, we aim at providing a set of explainability tool that analyse the difference in the face recognition models' behaviors when processing different demographic groups. We do that by leveraging higher-order statistical information based on activation maps to build explainability tools that link the FR models' behavior differences to certain facial regions. The experimental results on two datasets and two face recognition models pointed out certain areas of the face where the FR models react differently for certain demographic groups compared to reference groups. The outcome of these analyses interestingly aligns well with the results of studies that analyzed the anthropometric differences and the human judgment differences on the faces of different demographic groups. This is thus the first study that specifically tries to explain the biased behavior of FR models on different demographic groups and link it directly to the spatial facial features. The code is publicly available here.