论文标题

在Riemannian流形上学习稳定的机器人技能

Learning Stable Robotic Skills on Riemannian Manifolds

论文作者

Saveriano, Matteo, Abu-Dakka, Fares J., Kyrki, Ville

论文摘要

在本文中,我们提出了一种学习稳定的动力学系统的方法,这些动力系统会在里曼尼亚歧管上发展。该方法利用数据效率的程序来学习差异转换,将简单的稳定动力学系统映射到复杂的机器人技能上。通过从微分几何形状中利用数学工具,该方法可确保学习的技能满足基础歧管所施加的几何约束,例如单位季节性(UQ)(UQ)用于方向和对称的正定矩阵(SPD)矩阵,同时保留了对给定目标的互换。首先在公共基准上的模拟中测试了所提出的方法,该方法通过将笛卡尔数据投影到UQ和SPD歧管中,并与现有方法进行了比较。除了评估公共基准测试的方法外,还对在不同条件下进行瓶装的真正机器人进行了几项实验,并与人类操作员合作进行了钻井任务。评估在学习准确性和任务适应能力方面显示出令人鼓舞的结果。

In this paper, we propose an approach to learn stable dynamical systems evolving on Riemannian manifolds. The approach leverages a data-efficient procedure to learn a diffeomorphic transformation that maps simple stable dynamical systems onto complex robotic skills. By exploiting mathematical tools from differential geometry, the method ensures that the learned skills fulfill the geometric constraints imposed by the underlying manifolds, such as unit quaternion (UQ) for orientation and symmetric positive definite (SPD) matrices for impedance, while preserving the convergence to a given target. The proposed approach is firstly tested in simulation on a public benchmark, obtained by projecting Cartesian data into UQ and SPD manifolds, and compared with existing approaches. Apart from evaluating the approach on a public benchmark, several experiments were performed on a real robot performing bottle stacking in different conditions and a drilling task in cooperation with a human operator. The evaluation shows promising results in terms of learning accuracy and task adaptation capabilities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源