论文标题
常规最大正交的自相似光谱度量的偏密连续数字集
Beurling densities of regular maximal orthogonal sets of self-similar spectral measure with consecutive digit sets
论文作者
论文摘要
Beurling密度在研究限制在集合的归一化LEBESGUE度量的框架 - 光谱研究中起着关键作用。因此,在本文中,作者研究了一类自相似光谱措施的常规最大正交套件的$ s $ beberling密度,其中$ s $是其支撑的Hausdorff维度,并获得其确切的密度上限。
Beurling density plays a key role in the study of frame-spectrality of normalized Lebesgue measure restricted to a set. Accordingly, in this paper, the authors study the $s$-Beurling densities of regular maximal orthogonal sets of a class of self-similar spectral measures, where $s$ is the Hausdorff dimension of its support and obtain their exact upper bound of the densities.