论文标题

用毫米秒量子反应的挤压机械振荡器

A squeezed mechanical oscillator with milli-second quantum decoherence

论文作者

Youssefi, Amir, Kono, Shingo, Chegnizadeh, Mahdi, Kippenberg, Tobias J.

论文摘要

构建基于机械振荡器的杂种量子系统的持久挑战是确保工程耦合到辅助自由度,同时保持与环境的良好机械隔离,即低量子反应性,由低量子脱碳,由热腐蚀性和脱发组成。在这里,我们通过引入一个超导电路光学平台来克服这一挑战,该平台表现出低量子的反谐效,同时具有大型的光力耦合,这使我们能够以高忠诚度准备量子地面和挤压运动状态。我们直接测量20.5 Hz(对应于T_1 = 7.7 ms)的热脱位速率以及与先前的光学机械系统相比,量子状态寿命的纯dephasing速率为0.09 Hz。这使我们能够达到0.07量子的基态职业(93%的保真度),并实现低于零点的机械挤压。此外,我们观察到机械挤压状态的自由演变,并保留其在毫米秒刻度上的非古典性质。这种超低的量子脱位不仅增加了量子控制和测量宏观机械系统的忠诚度,而且还可能使与量子器接口的接口受益,并将该系统置于适合量子重力测试的参数状态。 (关键字:量子光学力学,超导电路机电,量子挤压,量子记忆,量子相干)

An enduring challenge in constructing mechanical oscillator-based hybrid quantum systems is to ensure engineered coupling to an auxiliary degree of freedom while maintaining good mechanical isolation from the environment, that is, low quantum decoherence, consisting of thermal decoherence and dephasing. Here, we overcome this challenge by introducing a superconducting circuit optomechanical platform which exhibits a low quantum decoherence while having a large optomechanical coupling, which allows us to prepare the quantum ground and squeezed states of motion with high fidelity. We directly measure a thermal decoherence rate of 20.5 Hz (corresponding to T_1 = 7.7 ms) as well as a pure dephasing rate of 0.09 Hz, resulted in a 100-fold improvement of quantum-state lifetime compared to the prior optomechanical systems. This enables us to reach to 0.07 quanta motional ground state occupation (93% fidelity) and realize mechanical squeezing of -2.7 dB below zero-point-fluctuation. Furthermore, we observe the free evolution of mechanical squeezed state, preserving its non-classical nature over milli-second timescales. Such ultra-low quantum decoherence not only increases the fidelity of quantum control and measurement of macroscopic mechanical systems, but may also benefit interfacing with qubits, and places the system in a parameter regime suitable for tests of quantum gravity. (Keywords: Quantum optomechanics, Superconducting circuit electromechanics, Quantum squeezing, Quantum memory, Quantum coherence)

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源