论文标题

二元性和动态WEYL群

Howe duality and dynamical Weyl group

论文作者

Dalipi, Rea, Felder, Giovanni

论文摘要

我们给出了$ u_q(\ wideHat {\ mthfrak {\ mathfrak {gl}} _ n)$的外部功能的$ r $ $ - matricuse的效率公式($ \ mathfrak {gl} _n,\ mathfrak {gl} _m)$ - 偶性。在限制$ n \ to \ infty $中,我们获得了fock空间的$ r $ $ - matrices。由于我们的结果,我们获得了Weyl组在可集成的$ u_q \ mathfrak {gl} _m $ -Modules上的动态动作,从而扩展了已知的动作在零重量空间上。在Anfisa Gurenkova的附录中,表明如果我们用一般的同样对称的kac-moody代数替换$ \ mathfrak {gl} _m $,则后者也将持有。

We give a fermionic formula for $R$-matrices of exterior powers of the vector representations of $U_q(\widehat{ \mathfrak{gl}}_N)$ and relate it to the dynamical Weyl group of Tarasov--Varchenko and Etingof--Varchenko, via a Howe ($\mathfrak{gl}_N,\mathfrak{gl}_M)$-duality. In the limit $N\to\infty$ we obtain $R$-matrices for Fock spaces. As a consequence of our result we obtain a dynamical action of the Weyl group on integrable $U_q\mathfrak{gl}_M$-modules, extending the known action on zero weight spaces. In an Appendix by Anfisa Gurenkova it is shown that the latter property also holds if we replace $\mathfrak{gl}_M$ by a general symmetrizable Kac--Moody algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源