论文标题
均衡 - 检查矩阵分区,用于有效的QC-LDPC代码的分层解码
Parity-Check Matrix Partitioning for Efficient Layered Decoding of QC-LDPC Codes
论文作者
论文摘要
在本文中,我们考虑如何对奇偶校验检查矩阵(PCM)进行划分,以减少准循环低密度奇偶校验检查(QC-LDPC)代码的行分层解码的硬件复杂性和计算延迟。首先,我们将PCM分配为优化问题,该问题的目标是最大程度地减少每一层的最大柱重量,同时维持不同层之间的块循环偏移属性。结果,我们为问题提供了所有可行的解决方案,并提出了最小的最大列重量重量重量的紧密下限$ω_{lb} $以评估解决方案。其次,我们定义一个称为层距离的度量,以测量连续层之间的数据依赖关系,并进一步说明如何识别与达到最小值$ω__{lb} = 1 $的层距离所需层距离的解决方案,这是减少计算延迟的优选。接下来,我们证明了最新的,目前是无法实现多项式时间复杂性优化问题的最佳解决方案。因此,提出了列举和贪婪的分区算法。之后,我们修改了准环境渐进的边缘生长(QC-PEG)算法,直接构造具有直接分区方案以实现$ω__{lb} $或所需的层距离的PCM。仿真结果表明,与基础5G LDPC代码相比,构造的代码具有更好的误差校正性能和较小的迭代次数。
In this paper, we consider how to partition the parity-check matrices (PCMs) to reduce the hardware complexity and computation delay for the row layered decoding of quasi-cyclic low-density parity-check (QC-LDPC) codes. First, we formulate the PCM partitioning as an optimization problem, which targets to minimize the maximum column weight of each layer while maintaining a block cyclic shift property among different layers. As a result, we derive all the feasible solutions for the problem and propose a tight lower bound $ω_{LB}$ on the minimum possible maximum column weight to evaluate a solution. Second, we define a metric called layer distance to measure the data dependency between consecutive layers and further illustrate how to identify the solutions with desired layer distance from those achieving the minimum value of $ω_{LB}=1$, which is preferred to reduce computation delay. Next, we demonstrate that up-to-now, finding an optimal solution for the optimization problem with polynomial time complexity is unachievable. Therefore, both enumerative and greedy partition algorithms are proposed instead. After that, we modify the quasi-cyclic progressive edge-growth (QC-PEG) algorithm to directly construct PCMs that have a straightforward partition scheme to achieve $ω_{LB} $ or the desired layer distance. Simulation results showed that the constructed codes have better error correction performance and smaller average number of iterations than the underlying 5G LDPC code.