论文标题

Sub-MW神经形态SNN音频处理应用程序与Rockpool和Xylo

Sub-mW Neuromorphic SNN audio processing applications with Rockpool and Xylo

论文作者

Bos, Hannah, Muir, Dylan

论文摘要

尖峰神经网络(SNN)为时间信号处理提供了有效的计算机制,尤其是与低功率SNN推理相结合时。历史上很难配置SNN,缺乏为任意任务找到解决方案的一般方法。近年来,逐渐发芽的优化方法已应用于SNN,并且越来越轻松。因此,SNN和SNN推理处理器为在没有云依赖性的能源约束环境中为商业低功率信号处理提供了一个良好的平台。但是,迄今为止,行业中的ML工程师无法访问这些方法,需要研究生级培训才能成功配置单个SNN应用程序。在这里,我们演示了一条方便的高级管道,以设计,训练和部署任意的时间信号处理应用程序到SUB-MW SNN推理硬件。我们使用用于时间信号处理的新的直接SNN体系结构,使用突触时间常数的金字塔在一系列时间尺度上提取信号特征。我们在环境音频分类任务上演示了这种体系结构,该任务部署在流式模式下的Xylo SNN推理处理器上。我们的应用程序以低功率(<100 $ $ W推理功率)达到了高准确性(98%)和低潜伏期(100ms)。我们的方法使培训和部署SNN应用程序可用于具有通用NN背景的ML工程师,而无需先前的Spiking NNS经验。我们打算将神经形态硬件和SNN成为商业低功率和边缘信号处理应用程序的诱人选择。

Spiking Neural Networks (SNNs) provide an efficient computational mechanism for temporal signal processing, especially when coupled with low-power SNN inference ASICs. SNNs have been historically difficult to configure, lacking a general method for finding solutions for arbitrary tasks. In recent years, gradient-descent optimization methods have been applied to SNNs with increasing ease. SNNs and SNN inference processors therefore offer a good platform for commercial low-power signal processing in energy constrained environments without cloud dependencies. However, to date these methods have not been accessible to ML engineers in industry, requiring graduate-level training to successfully configure a single SNN application. Here we demonstrate a convenient high-level pipeline to design, train and deploy arbitrary temporal signal processing applications to sub-mW SNN inference hardware. We apply a new straightforward SNN architecture designed for temporal signal processing, using a pyramid of synaptic time constants to extract signal features at a range of temporal scales. We demonstrate this architecture on an ambient audio classification task, deployed to the Xylo SNN inference processor in streaming mode. Our application achieves high accuracy (98%) and low latency (100ms) at low power (<100$μ$W inference power). Our approach makes training and deploying SNN applications available to ML engineers with general NN backgrounds, without requiring specific prior experience with spiking NNs. We intend for our approach to make Neuromorphic hardware and SNNs an attractive choice for commercial low-power and edge signal processing applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源