论文标题

与Desarguesian卵形相关的线性代码,$ q^+(7,q)$

Linear codes associated with the Desarguesian ovoids in $Q^+(7,q)$

论文作者

Feng, Tao, Kiermaier, Michael, Lin, Peixian, Schmidt, Kai-Uwe

论文摘要

正交极空间中的Desarguesian卵形$ q^+(7,q)$ d $ q $甚至首先是坎托(Kantor)通过检查$ 8 $二维绝对不可减少的模块化表示的$ \ text {pgl}(2,q^3)$。我们为$ Q $的所有主要功率值调查了此模块。最短的$ \ text {pgl}(2,q^3)$ - 轨道$ o $为$ q^+(7,q)的desarguesian ovoid for $ q $,众所周知,它可以为奇数〜$ q $提供完全的偏卵形$ w(7,q)。我们确定$ o $的超平面部分。作为推论,我们获得了参数$ [q^3+1,8,q^3-q^2-q] _q $以及关联的$ \ mathbb {f} _q $ - 线性代码$ c_o $和参数$和参数$ [q^3+1,q^3-7,7,7,5] _Q $ q_ $ c_o $ c_o Q^$ c_o q of的权重分布。我们还表明,这两个代码$ C_O $和$ C_O^\ PERP $对于所有$ Q $的所有质量功率值都是长度最佳的。

The Desarguesian ovoids in the orthogonal polar space $Q^+(7,q)$ with $q$ even have first been introduced by Kantor by examining the $8$-dimensional absolutely irreducible modular representations of $\text{PGL}(2,q^3)$. We investigate this module for all prime power values of $q$. The shortest $\text{PGL}(2,q^3)$-orbit $O$ gives the Desarguesian ovoid in $Q^+(7,q)$ for even $q$ and it is known to give a complete partial ovoid of the symplectic polar space $W(7,q)$ for odd~$q$. We determine the hyperplane sections of $O$. As a corollary, we obtain the parameters $[q^3+1,8,q^3-q^2-q]_q$ and the weight distribution of the associated $\mathbb{F}_q$-linear code $C_O$ and the parameters $[q^3+1,q^3-7,5]_q$ of the dual code $C_O^\perp$ for $q \ge 4$. We also show that both codes $C_O$ and $C_O^\perp$ are length-optimal for all prime power values of $q$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源