论文标题
通过基于能量的模型,在自我训练的无监督域适应中限制伪标记
Constraining Pseudo-label in Self-training Unsupervised Domain Adaptation with Energy-based Model
论文作者
论文摘要
深度学习通常是饥饿的,并且开发了无监督的域适应性(UDA),以将标记的源域中的知识引入未标记的目标域中。最近,深度自我训练为UDA提供了一种强大的手段,涉及一个预测目标域,然后将自信的预测作为硬伪标记的迭代过程。但是,伪标签通常是不可靠的,因此很容易导致带有传播误差的偏差解决方案。在本文中,我们采用基于能量的模型,并以能量函数最小化目标来限制未标记的目标样品的训练。可以通过简单的附加正规化或基于能量的损失来实现。该框架使我们能够获得基于能量的模型的好处,同时在插件时保持强劲的判别性能。研究了收敛属性及其与分类期望最小化的联系。我们对图像分类的最流行和大规模UDA基准以及语义分割进行了广泛的实验,以证明其通用性和有效性。
Deep learning is usually data starved, and the unsupervised domain adaptation (UDA) is developed to introduce the knowledge in the labeled source domain to the unlabeled target domain. Recently, deep self-training presents a powerful means for UDA, involving an iterative process of predicting the target domain and then taking the confident predictions as hard pseudo-labels for retraining. However, the pseudo-labels are usually unreliable, thus easily leading to deviated solutions with propagated errors. In this paper, we resort to the energy-based model and constrain the training of the unlabeled target sample with an energy function minimization objective. It can be achieved via a simple additional regularization or an energy-based loss. This framework allows us to gain the benefits of the energy-based model, while retaining strong discriminative performance following a plug-and-play fashion. The convergence property and its connection with classification expectation minimization are investigated. We deliver extensive experiments on the most popular and large-scale UDA benchmarks of image classification as well as semantic segmentation to demonstrate its generality and effectiveness.