论文标题

多模式性心脏图像计算:调查

Multi-Modality Cardiac Image Computing: A Survey

论文作者

Li, Lei, Ding, Wangbin, Huang, Liqun, Zhuang, Xiahai, Grau, Vicente

论文摘要

多模式心脏成像在心血管疾病患者的管理中起关键作用。它允许互补的解剖学,形态学和功能信息,提高诊断准确性,并提高心血管干预和临床结果的疗效。对多模式心脏图像的完全自动化处理和定量分析可能会对临床研究和基于证据的患者管理产生直接影响。但是,这些需要克服重大挑战,包括模式间未对准和寻找最佳方法来整合来自不同模式的信息。 本文旨在对心脏病学,计算方法,验证策略,相关临床工作流程和未来观点的多模式成像进行全面综述。对于计算方法,我们有利地关注这三个任务,即注册,融合和分割,这些任务通常涉及多模式成像数据,\ textIt {结合来自不同模式的信息,或者要跨模态传输信息}。该评论强调,多模式性心脏成像数据具有广泛适用性的诊所,例如跨体瓣植入指南,心肌生存能力评估,导管消融疗法及其患者选择。然而,许多挑战仍未解决,例如缺失的模态,成像和非成像数据的组合以及统一的分析以及不同方式的表示。定义良好的技术如何适合临床工作流程以及它们引入了多少其他相关信息,这也有工作要做。这些问题可能会继续是一个积极的研究领域,并且将来要回答的问题。

Multi-modality cardiac imaging plays a key role in the management of patients with cardiovascular diseases. It allows a combination of complementary anatomical, morphological and functional information, increases diagnosis accuracy, and improves the efficacy of cardiovascular interventions and clinical outcomes. Fully-automated processing and quantitative analysis of multi-modality cardiac images could have a direct impact on clinical research and evidence-based patient management. However, these require overcoming significant challenges including inter-modality misalignment and finding optimal methods to integrate information from different modalities. This paper aims to provide a comprehensive review of multi-modality imaging in cardiology, the computing methods, the validation strategies, the related clinical workflows and future perspectives. For the computing methodologies, we have a favored focus on the three tasks, i.e., registration, fusion and segmentation, which generally involve multi-modality imaging data, \textit{either combining information from different modalities or transferring information across modalities}. The review highlights that multi-modality cardiac imaging data has the potential of wide applicability in the clinic, such as trans-aortic valve implantation guidance, myocardial viability assessment, and catheter ablation therapy and its patient selection. Nevertheless, many challenges remain unsolved, such as missing modality, combination of imaging and non-imaging data, and uniform analysis and representation of different modalities. There is also work to do in defining how the well-developed techniques fit in clinical workflows and how much additional and relevant information they introduce. These problems are likely to continue to be an active field of research and the questions to be answered in the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源