论文标题
DBE-KT22:基于在线学生评估的知识跟踪数据集
DBE-KT22: A Knowledge Tracing Dataset Based on Online Student Evaluation
论文作者
论文摘要
在过去的十年中,在线教育为全球学生提供负担得起的高质量教育而越来越重要。随着越来越多的学生改用在线学习,这在全球大流行期间已经进一步放大。大多数在线教育任务,例如课程建议,锻炼建议或自动评估,取决于跟踪学生的知识进步。这被称为文献中的\ emph {知识追踪}问题。解决此问题需要收集学生评估数据,以反映其知识演变随着时间的流逝。在本文中,我们提出了一个新的知识跟踪数据集,名为数据库练习(DBE-KT22),该数据库是在澳大利亚澳大利亚国立大学教授的课程中从在线学生锻炼系统中收集的。我们讨论了DBE-KT22数据集的特征,并将其与知识追踪文献中现有数据集进行对比。我们的数据集可通过澳大利亚数据档案平台公开访问。
Online education has gained an increasing importance over the last decade for providing affordable high-quality education to students worldwide. This has been further magnified during the global pandemic as more students switched to study online. The majority of online education tasks, e.g., course recommendation, exercise recommendation, or automated evaluation, depends on tracking students' knowledge progress. This is known as the \emph{Knowledge Tracing} problem in the literature. Addressing this problem requires collecting student evaluation data that can reflect their knowledge evolution over time. In this paper, we propose a new knowledge tracing dataset named Database Exercises for Knowledge Tracing (DBE-KT22) that is collected from an online student exercise system in a course taught at the Australian National University in Australia. We discuss the characteristics of the DBE-KT22 dataset and contrast it with the existing datasets in the knowledge tracing literature. Our dataset is available for public access through the Australian Data Archive platform.