论文标题
学习者知识评估的先决条件Q-Matrix改进:在线学习环境中的案例研究
Prerequisite-driven Q-matrix Refinement for Learner Knowledge Assessment: A Case Study in Online Learning Context
论文作者
论文摘要
在线学习平台中越来越多的学习痕迹有望对学习者知识评估(LKA)的独特见解,这是一种基本的个性化训练技术,可在这些平台中启用各种进一步的自适应辅导服务。对学习者知识的精确评估需要细粒度的Q-Matrix,该Q-Matrix通常由专家设计,以将项目映射到域中的技能。由于主观趋势,某些误差可能会降低LKA的性能。已经做出了一些努力来完善小规模的Q-matrix,但是,很难扩展可扩展性并将这些方法应用于大规模的在线学习环境,并具有许多项目和大量技能。此外,现有的LKA模型采用了灵活的深度学习模型,可以在这项任务上表现出色,但是LKA的适当性仍然受到模型在相当稀疏的项目技能图和学习者的练习数据上的表示能力的挑战。为了克服这些问题,在本文中,我们建议在线环境中针对学习者知识评估(PQRLKA)的先决条件Q-Matrix改进框架。我们从学习者的响应数据中推断出先决条件,并使用它来完善专家定义的Q-Matrix,从而使其可解释性和可扩展性应用于大规模的在线学习环境。基于精致的Q-Matrix,我们提出了一种Metapath2VEC增强的卷积表示方法,以获取具有丰富信息的项目的全面表示,并将其提供给PQRLKA模型,以最终评估学习者的知识。在三个现实世界数据集上进行的实验证明了我们模型推断Q-Matrix改进的先决条件的能力,以及其对LKA任务的优势。
The ever growing abundance of learning traces in the online learning platforms promises unique insights into the learner knowledge assessment (LKA), a fundamental personalized-tutoring technique for enabling various further adaptive tutoring services in these platforms. Precise assessment of learner knowledge requires the fine-grained Q-matrix, which is generally designed by experts to map the items to skills in the domain. Due to the subjective tendency, some misspecifications may degrade the performance of LKA. Some efforts have been made to refine the small-scale Q-matrix, however, it is difficult to extend the scalability and apply these methods to the large-scale online learning context with numerous items and massive skills. Moreover, the existing LKA models employ flexible deep learning models that excel at this task, but the adequacy of LKA is still challenged by the representation capability of the models on the quite sparse item-skill graph and the learners' exercise data. To overcome these issues, in this paper we propose a prerequisite-driven Q-matrix refinement framework for learner knowledge assessment (PQRLKA) in online context. We infer the prerequisites from learners' response data and use it to refine the expert-defined Q-matrix, which enables the interpretability and the scalability to apply it to the large-scale online learning context. Based on the refined Q-matrix, we propose a Metapath2Vec enhanced convolutional representation method to obtain the comprehensive representations of the items with rich information, and feed them to the PQRLKA model to finally assess the learners' knowledge. Experiments conducted on three real-world datasets demonstrate the capability of our model to infer the prerequisites for Q-matrix refinement, and also its superiority for the LKA task.