论文标题
部分可观测时空混沌系统的无模型预测
Analysis of ground level enhancement events of 29 September 1989; 15 April 2001 and 20 January 2005
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We present the results of analyses of the ground level enhancements (GLEs) of cosmic ray (CR) events of 29 September 1989; 15 April 2001 and 20 January 2005. This involve examination of hourly raw CR counts of an array of neutron monitors (NMs) spread across different geographical latitudes and longitudes. Using awk script and computer codes implemented in R-software, the pressure corrected raw data plots of the NMs were grouped into low-, mid-, and, high-latitudes. The results show both similarities and differences in the structural patterns of the GLE signals. In an attempt to explain why the CR count during the decay phase of GLEs is always higher than the count before peak, we interpreted all counts prior to the peak as coming from direct solar neutrons and those in the decay phase including the peak as coming from secondary CR neutrons generated by the interactions of primary CRs with the atoms and molecules in the atmosphere. We identified NMs that detected these primary neutrons and found that they are close in longitudes. Previous authors seemingly identified these two species as impulsive and gradual events. Although there are a number of unexplained manifestations of GLE signals, some of the results suggest that geomagnetic rigidity effectively determines the intensity of CRs at low- and mid-latitudes. Its impact is apparently insignificant in high-latitude regions. Nevertheless, the results presented should be validated before making any firm statements. Principally, the contributions of the ever-present and intractable CR diurnal anisotropies to GLE signals should be accounted for in future work.