论文标题

Itemset实用程序最大化与相关度量

Itemset Utility Maximization with Correlation Measure

论文作者

Chen, Jiahui, Xu, Yixin, Wan, Shicheng, Gan, Wensheng, Lin, Jerry Chun-Wei

论文摘要

作为重要的数据挖掘技术,高公用事业项目集挖掘(HUIM)用于找出有趣但隐藏的信息(例如利润和风险)。 HUIM已广泛应用于许多应用程序方案,例如市场分析,医疗检测和网络点击流分析。但是,大多数以前的HUIM方法通常会忽略项目集中项目之间的关系。因此,在Huim中发现了许多无关组合(例如,\ {Gold,Apple \}和\ {笔记本,书籍\})。为了解决这一限制,已经提出了许多算法来开采相关的高公用事业项目集(Cohuis)。在本文中,我们提出了一种新型算法,称为Itemset实用性最大化,相关度量(COIUM),该算法既考虑较强的相关性和项目的有利可图。此外,新型算法采用数据库投影机制来降低数据库扫描的成本。此外,利用了两种上限和四种修剪策略来有效修剪搜索空间。并使用一个名为“实用程序”的简洁阵列结构来计算和存储在线性时间和空间中所采用的上限。最后,对密集和稀疏数据集的广泛实验结果表明,在运行时和内存消耗方面,COIUM的表现明显优于最新算法。

As an important data mining technology, high utility itemset mining (HUIM) is used to find out interesting but hidden information (e.g., profit and risk). HUIM has been widely applied in many application scenarios, such as market analysis, medical detection, and web click stream analysis. However, most previous HUIM approaches often ignore the relationship between items in an itemset. Therefore, many irrelevant combinations (e.g., \{gold, apple\} and \{notebook, book\}) are discovered in HUIM. To address this limitation, many algorithms have been proposed to mine correlated high utility itemsets (CoHUIs). In this paper, we propose a novel algorithm called the Itemset Utility Maximization with Correlation Measure (CoIUM), which considers both a strong correlation and the profitable values of the items. Besides, the novel algorithm adopts a database projection mechanism to reduce the cost of database scanning. Moreover, two upper bounds and four pruning strategies are utilized to effectively prune the search space. And a concise array-based structure named utility-bin is used to calculate and store the adopted upper bounds in linear time and space. Finally, extensive experimental results on dense and sparse datasets demonstrate that CoIUM significantly outperforms the state-of-the-art algorithms in terms of runtime and memory consumption.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源