论文标题
在差分夹杂物的强大稳健安全概念上
On a Strong Robust-Safety Notion for Differential Inclusions
论文作者
论文摘要
只要在存在连续和积极的扰动的情况下,它仍然是安全的,称为稳健性余量,并将其添加到右侧的参数和图像(动力学)。因此,与现有的鲁棒安全概念相比,仅在右侧的图像中添加了连续和积极的扰动,在设置值右侧的背景下,提出的概念被证明相对更强。此外,我们区分了强大的稳健安全性和\ textit {均匀的强稳定安全},这需要存在恒定的稳健性余量。本文的第一部分提出了足够的条件,以实现障碍功能方面的强大安全性。提出的条件仅涉及屏障功能和系统的右侧。此外,我们确定了强大的安全性和平稳屏障证书之间的等效性。本文的第二部分提出了场景,在此方面,强大的鲁棒安全性意味着统一的强大安全性。最后,我们就屏障功能提出了足够的条件。
A dynamical system is strongly robustly safe provided that it remains safe in the presence of a continuous and positive perturbation, named robustness margin, added to both the argument and the image of the right-hand side (the dynamics). Therefore, in comparison with existing robust-safety notions, where the continuous and positive perturbation is added only to the image of the right-hand side, the proposed notion is shown to be relatively stronger in the context of set-valued right-hand sides. Furthermore, we distinguish between strong robust safety and \textit{uniform strong robust safety}, which requires the existence of a constant robustness margin. The first part of the paper proposes sufficient conditions for strong robust safety in terms of barrier functions. The proposed conditions involve only the barrier function and the system's right-hand side. Furthermore, we establish the equivalence between strong robust safety and the existence of a smooth barrier certificate. The second part of the paper proposes scenarios, under which, strong robust safety implies uniform strong robust safety. Finally, we propose sufficient conditions for the latter notion in terms of barrier functions.