论文标题

目的:牢记答案以纠正教育应用中的中国披肩测试

AiM: Taking Answers in Mind to Correct Chinese Cloze Tests in Educational Applications

论文作者

Zhang, Yusen, Li, Zhongli, Zhou, Qingyu, Liu, Ziyi, Li, Chao, Ma, Mina, Cao, Yunbo, Liu, Hongzhi

论文摘要

为了自动纠正手写作业,传统方法是使用OCR模型来识别字符并将其与答案进行比较。 OCR模型在识别手写的汉字时很容易混淆,并且在模型推断过程中缺少答案的文本信息。但是,教师总是考虑到这些答案来审查和纠正作业。在本文中,我们专注于中国披肩测试校正并提出一种多模式方法(命名为AIM)。答案的编码表示与学生笔迹的视觉信息进行了交互。我们没有预测“正确”或“错误”,而是在答案文本上执行序列标记,以推断哪个答案字符与手写内容的不同方式不同。我们将OCR数据集的样本作为此任务的积极样本,并开发一种负面样本增强方法来扩展培训数据。实验结果表明,目标的范围优于基于OCR的方法。广泛的研究证明了我们多模式方法的有效性。

To automatically correct handwritten assignments, the traditional approach is to use an OCR model to recognize characters and compare them to answers. The OCR model easily gets confused on recognizing handwritten Chinese characters, and the textual information of the answers is missing during the model inference. However, teachers always have these answers in mind to review and correct assignments. In this paper, we focus on the Chinese cloze tests correction and propose a multimodal approach (named AiM). The encoded representations of answers interact with the visual information of students' handwriting. Instead of predicting 'right' or 'wrong', we perform the sequence labeling on the answer text to infer which answer character differs from the handwritten content in a fine-grained way. We take samples of OCR datasets as the positive samples for this task, and develop a negative sample augmentation method to scale up the training data. Experimental results show that AiM outperforms OCR-based methods by a large margin. Extensive studies demonstrate the effectiveness of our multimodal approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源