论文标题
图像重建通过迭代反转的期望传播技术来重建
Image Reconstruction by Splitting Expectation Propagation Techniques from Iterative Inversion
论文作者
论文摘要
从降采样和嘈杂的测量值(例如MRI和低剂量计算机断层扫描(CT))中重建图像是数学上不良的反问题。我们提出了一种基于期望传播(EP)技术的易于使用的重建方法。我们将蒙特卡洛(MC)方法,马尔可夫链蒙特卡洛(MCMC)和交替的乘数方向方法(ADMM)算法纳入EP方法,以解决EP中遇到的棘手性问题。我们在复杂的贝叶斯模型上演示了用于图像重建的方法。我们的技术应用于伽马相机扫描中的图像。我们仅将EPMC,EP-MCMC,EP-ADMM方法与MCMC进行比较。指标是更好的图像重建,速度和参数估计。在真实和模拟数据中使用伽马相机成像进行的实验表明,我们提出的方法在计算上比MCMC昂贵,并且产生相对更好的图像重建。
Reconstructing images from downsampled and noisy measurements, such as MRI and low dose Computed Tomography (CT), is a mathematically ill-posed inverse problem. We propose an easy-to-use reconstruction method based on Expectation Propagation (EP) techniques. We incorporate the Monte Carlo (MC) method, Markov Chain Monte Carlo (MCMC), and Alternating Direction Method of Multiplier (ADMM) algorithm into EP method to address the intractability issue encountered in EP. We demonstrate the approach on complex Bayesian models for image reconstruction. Our technique is applied to images from Gamma-camera scans. We compare EPMC, EP-MCMC, EP-ADMM methods with MCMC only. The metrics are the better image reconstruction, speed, and parameters estimation. Experiments with Gamma-camera imaging in real and simulated data show that our proposed method is convincingly less computationally expensive than MCMC and produces relatively a better image reconstruction.