论文标题
使用卷积自动编码器的监督维度降低和图像分类
Supervised Dimensionality Reduction and Image Classification Utilizing Convolutional Autoencoders
论文作者
论文摘要
重建和分类误差的联合优化是一个难题的问题,尤其是当使用非线性映射时。为了克服这一障碍,提出了一种新颖的优化策略,其中将降低维度的卷积自动编码器和由完全连接的网络组成的分类器组合在一起,以同时产生监督的维度降低和预测。事实证明,这种方法也可以极大地有益于深度学习体系结构的解释性。此外,可以利用针对分类任务进行优化的最终潜在空间来改善传统的,可解释的分类算法。实验结果表明,所提出的方法对最先进的深度学习方法实现了竞争成果,同时在参数计数方面效率更高。最后,从经验上证明,所提出的方法不仅引入了有关通过产生的潜在空间的数据结构,而且还涉及分类行为的高级解释性。
The joint optimization of the reconstruction and classification error is a hard non convex problem, especially when a non linear mapping is utilized. In order to overcome this obstacle, a novel optimization strategy is proposed, in which a Convolutional Autoencoder for dimensionality reduction and a classifier composed by a Fully Connected Network, are combined to simultaneously produce supervised dimensionality reduction and predictions. It turned out that this methodology can also be greatly beneficial in enforcing explainability of deep learning architectures. Additionally, the resulting Latent Space, optimized for the classification task, can be utilized to improve traditional, interpretable classification algorithms. The experimental results, showed that the proposed methodology achieved competitive results against the state of the art deep learning methods, while being much more efficient in terms of parameter count. Finally, it was empirically justified that the proposed methodology introduces advanced explainability regarding, not only the data structure through the produced latent space, but also about the classification behaviour.